Microstructural and Residuals Stress Analysis of Friction Stir Welding of X80 Pipeline Steel Plates Using Magnetic Barkhausen Noise

  • J. A. AvilaEmail author
  • F. F. Conde
  • H. C. Pinto
  • J. Rodriguez
  • F. A. F. Grijalba


Friction stir welding is a solid-state joining method conducted under large stress and strain conditions at low peak temperatures when compared to arc welding. Friction stir welding produces a large variety of microstructures and a M-shaped residual stress line profile along the cross-section of the welds. In this work, we present the use of magnetic Barkhausen noise to qualitatively assess the residual stress profile along the transverse direction of a two-pass friction stir welding butt joint on a X80 pipeline steel. Results were compared and correlated to X-ray diffraction, microstructural and hardness characterization. The peak position and the root mean square profiles of the magnetic Barkhausen noise reproduced the residual stress profile obtained by X-ray diffraction and the hardness profile, respectively. These results can be used for developing a qualitative quality control method for friction stir welding joints in other steels.


Residual stress Friction stir welding Magnetic Barkhausen noise X-ray diffraction X80 pipeline steel 



We would like to thank the Brazilian Nanotechnology National Laboratory, CNPEM/MCTIC for the assistance with SEM measurements; PETROBRAS for providing research funding; Tenaris Confab for the donation of the materials used in this research; and USP-EESC for the assistance with the XRD measurements. Authors would like to acknowledge Dr Alberto Cury for his support regarding XRD analysis. J.A. Avila acknowledges CNPq (Grant No. 150215/2016-9). Dr. H. Pinto is a CNPq fellow and Dr. Freddy A. Franco G. acknowledges the Support to Research and Extension FAEPEX at Unicamp (Ref. 1424/2015) for research support. Special thanks are due to Dr. Julian Escobar for his important review and suggestions of the manuscript.


  1. 1.
    Avila, J.A., Rodriguez, J., Mei, P.R., Ramirez, A.J.: Microstructure and fracture toughness of multipass friction stir welded joints of API-5L-X80 steel plates. Mater. Sci. Eng. A 673, 257–265 (2016). CrossRefGoogle Scholar
  2. 2.
    Sowards, J.W., Gnäupel-Herold, T., David McColskey, J., Pereira, V.F., Ramirez, A.J.: Characterization of mechanical properties, fatigue-crack propagation, and residual stresses in a microalloyed pipeline-steel friction-stir weld. Mater. Des. 88, 632–642 (2015). CrossRefGoogle Scholar
  3. 3.
    Alipooramirabad, H., Paradowska, A., Ghomashchi, R., Reid, M.: Investigating the effects of welding process on residual stresses, microstructure and mechanical properties in HSLA steel welds. J. Manuf. Process. 28, 70–81 (2017). CrossRefGoogle Scholar
  4. 4.
    Kumar, N., Mishra, R.S., Baumann, J.A.: Residual Stresses in Friction Stir Welding. Elsevier, Amsterdam (2014). CrossRefGoogle Scholar
  5. 5.
    Brauss, M.E.: Residual stress characterization of welds and post-weld processes using X-ray diffraction techniques. Proc. SPIE. 3399, 196–204 (1998). CrossRefGoogle Scholar
  6. 6.
    Rossini, N.S., Dassisti, M., Benyounis, K.Y., Olabi, A.G.: Methods of measuring residual stresses in components. Mater. Des. 35, 572–588 (2012). CrossRefGoogle Scholar
  7. 7.
    Franco, F.A., Padovese, L.R.: Non-destructive flaw mapping of steel surfaces by the continuous magnetic Barkhausen noise method: detection of plastic deformation. J. Nondestruct. Eval. 37(2), 26 (2018). CrossRefGoogle Scholar
  8. 8.
    Jiles, D.C.: Dynamics of domain magnetization and the Barkhausen effect. Czechoslov. J. Phys. 50, 893–924 (2000). CrossRefGoogle Scholar
  9. 9.
    Augustyniak, M., Augustyniak, B., Piotrowski, L., Chmielewski, M.: Determination of magnetisation conditions in a double-core Barkhausen noise measurement set-up. J. Nondestruct. Eval. 34(2), 16 (2015). CrossRefGoogle Scholar
  10. 10.
    Vourna, P., Ktena, A., Tsakiridis, P.E., Hristoforou, E.: A novel approach of accurately evaluating residual stress and microstructure of welded electrical steels. NDT E Int. 71, 33–42 (2015). CrossRefGoogle Scholar
  11. 11.
    Stupakov, O., Melikhov, Y.: Influence of magnetizing and filtering frequencies on Barkhausen noise response. IEEE Trans. Magn. 50, 1–4 (2014). CrossRefGoogle Scholar
  12. 12.
    Ranjan, R., Jiles, D.C., Rastogi, P.: Magnetic properties of decarburized steels: an investigation of the effects of grain size and carbon content. IEEE Trans. Magn. 23, 1869–1876 (1987). CrossRefGoogle Scholar
  13. 13.
    Anglada-Rivera, J., Padovese, L.R., Capó-Sánchez, J.: Magnetic Barkhausen noise and hysteresis loop in commercial carbon steel: influence of applied tensile stress and grain size. J. Magn. Magn. Mater. 231, 299–306 (2001). CrossRefGoogle Scholar
  14. 14.
    Buttle, D.J., Briggs, G.A.D., Jakubovics, J.P., Little, E.A., Scruby, C.B., Busse, G., Sayers, C.M., Green, R.E.: Magnetoacoustic and Barkhausen emission in ferromagnetic materials [and discussion]. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 320(1554), 363–378 (1986). CrossRefGoogle Scholar
  15. 15.
    Saquet, O., Chicois, J., Vincent, A.: Barkhausen noise from plain carbon steels: analysis of the influence of microstructure. Mater. Sci. Eng. A 269, 73–82 (1999). CrossRefGoogle Scholar
  16. 16.
    Franco, F.A., González, M.F.R., de Campos, M.F., Padovese, L.R.: Relation between magnetic Barkhausen noise and hardness for Jominy quench tests in SAE 4140 and 6150 steels. J. Nondestruct. Eval. 32, 93–103 (2013). CrossRefGoogle Scholar
  17. 17.
    Piotrowski, L., Augustyniak, B., Chmielewski, M., Tomáš, I.: The influence of plastic deformation on the magnetoelastic properties of the CSN12021 grade steel. J. Magn. Magn. Mater. 321, 2331–2335 (2009). CrossRefGoogle Scholar
  18. 18.
    Kleber, X., Vincent, A.: On the role of residual internal stresses and dislocations on Barkhausen noise in plastically deformed steel. NDT E Int. 37, 439–445 (2004). CrossRefGoogle Scholar
  19. 19.
    Perez-Benitez, J.A., Capo-Sanchez, J., Anglada-Rivera, J., Padovese, L.R.: A study of plastic deformation around a defect using the magnetic Barkhausen noise in ASTM 36 steel. NDT E Int. 41, 53–58 (2008). CrossRefGoogle Scholar
  20. 20.
    Raja, A.R., Khan Yusufzai, M.Z., Vashista, M.: Micro-magnetic analysis of friction stir welded steel plates. Int. J. Adv. Manuf. Technol. 97(5–8), 2051–2059 (2018). CrossRefGoogle Scholar
  21. 21.
    Vourna, P., Ktena, A., Tsakiridis, P.E., Hristoforou, E.: An accurate evaluation of the residual stress of welded electrical steels with magnetic Barkhausen noise. Measurement 71, 31–45 (2015). CrossRefGoogle Scholar
  22. 22.
    Ju, J.B., Lee, J.S., Jang, J.I., Kim, W.S., Kwon, D.: Determination of welding residual stress distribution in API X65 pipeline using a modified magnetic Barkhausen noise method. Int. J. Press. Vessels Pip. 80, 641–646 (2003). CrossRefGoogle Scholar
  23. 23.
    Kolařík, K., Ganev, N., Trojan, K., Řídký, O., Zuzánek, L., Čapek, J.: X-Ray diffraction and Barkhausen noise diagnostics of thick welds prepared by metal active gas and laser welding. Appl. Mech. Mater. 827, 113–116 (2016). CrossRefGoogle Scholar
  24. 24.
    Sambamurthy, E., Dutta, S., Panda, A.K., Mitra, A., Roy, R.K.: Evaluation of post-weld heat treatment behavior in modified 9Cr-1Mo steel weldment by magnetic Barkhausen emission. Int. J. Press. Vessels Pip. 123, 86–91 (2014). CrossRefGoogle Scholar
  25. 25.
    Ávila, J.A., Ruchert, C.O.F.T., Mei, P.R., Marinho, R.R., Paes, M.T.P., Ramirez, A.J.: Fracture toughness assessment at different temperatures and regions within a friction stirred API 5L X80 steel welded plates. Eng. Fract. Mech. 147, 176–186 (2015). CrossRefGoogle Scholar
  26. 26.
    Fitzpatrick, M.E., Fry, A.T., Holdway, P., Kandil, F.A., Shackleton, J., Suominen, L.: Determination of residual stresses by X-ray diffraction. Measurement good practice guide book no. 52. In: NPL, p. 68. London (2005)Google Scholar
  27. 27.
    Alessandro, B., Beatrice, C., Bertotti, G., Montorsi, A.: Phenomenology and interpretation of the Barkhausen effect in ferromagnetic materials (invited). J. Appl. Phys. 64, 5355–5360 (1988). CrossRefGoogle Scholar
  28. 28.
    Avila, J.A.D., Giorjao, R.A.R., Rodriguez, J.F., Fonseca, E.B., Ramirez, A.J.: Modeling of thermal cycles and microstructural analysis of pipeline steels processed by friction stir processing. Int. J. Adv. Manuf. Technol. 98, 2611–2618 (2018). CrossRefGoogle Scholar
  29. 29.
    Krauss, G.: Steels: Processing, Structure and Perfomance, 1st edn. ASM International, Materials Park (2005)Google Scholar
  30. 30.
    Ozekcin, A., Jin, H.W., Koo, J.Y., Bangaru, N.V., Ayer, R., Vaughn, G., Steel, R., Packer, S.: A microstructural study of friction stir welded joints of carbon steels. Fourteenth Int. Offshore Polar Eng. Conf. 14, 284–288 (2004)Google Scholar
  31. 31.
    Cho, H.-H., Kang, S.H., Kim, S.-H., Oh, K.H., Kim, H.J., Chang, W.-S., Han, H.N.: Microstructural evolution in friction stir welding of high-strength linepipe steel. Mater. Des. 34, 258–267 (2012). CrossRefGoogle Scholar
  32. 32.
    Avila, J., Escobar, J., Cunha, B., Magalhães, W., Mei, P., Rodriguez, J., Pinto, H., Ramirez, A.: Physical simulation as a tool to understand friction stir processed X80 pipeline steel plate complex microstructures. J. Mater. Res. Technol. 01, 1–10 (2018). CrossRefGoogle Scholar
  33. 33.
    Sha, Q., Li, D.: Microstructure, mechanical properties and hydrogen induced cracking susceptibility of X80 pipeline steel with reduced Mn content. Mater. Sci. Eng. A 585, 214–221 (2013). CrossRefGoogle Scholar
  34. 34.
    Sánchez, J.C., De Campos, M.F., Padovese, L.R.: Magnetic Barkhausen emission in lightly deformed AISI 1070 steel. J. Magn. Magn. Mater. 324, 11–14 (2012). CrossRefGoogle Scholar
  35. 35.
    Aydin, H., Nelson, T.W.: Microstructure and mechanical properties of hard zone in friction stir welded X80 pipeline steel relative to different heat input. Mater. Sci. Eng. A 586, 313–322 (2013). CrossRefGoogle Scholar
  36. 36.
    Mishra, R.S.R.S., Mahoney, M.M.W.M.W.: Friction Stir Welding and Processing. ASM International, Materials Park (2005). CrossRefGoogle Scholar
  37. 37.
    Ávila, J.A.D., Lima, V., Ruchert, C.O.F.T., Mei, P.R., Ramirez, A.J.: Guide for recommended practices to perform crack tip opening displacement tests in high strength low alloy steels. Soldag. Inspeção. 21, 290–302 (2016). CrossRefGoogle Scholar
  38. 38.
    J. Pal’a, J., Bydžovský, J.: Barkhausen noise as a function of grain size in non-oriented FeSi steel. Meas. J. Int. Meas. Confed. 46, 866–870 (2013). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.São Paulo State University (UNESP)São João da Boa VistaBrazil
  2. 2.Department of Materials Engineering São Carlos School of Engineering (EESC)University of São Paulo (USP)Sao CarlosBrazil
  3. 3.EIA UniversityEnvigadoColombia
  4. 4.School of Mechanical EngineeringUniversity of Campinas (UNICAMP)CampinasBrazil

Personalised recommendations