Advertisement

An Approach to Eddy-Current Evaluation of the Structural State in a Cast Aluminum–Silicon Alloy Subjected to Surface Laser Heat Treatment

  • R. A. SavraiEmail author
  • I. Yu. Malygina
  • Yu. M. Kolobylin
Article

Abstract

The effect of surface laser heat treatment on the eddy-current parameters of the cast Al–6.34Si–0.32Mg alloy has been studied at excitation frequencies of f = 6–136 kHz. It has been established that the laser heat treatment affects both the amplitude A and the phase angle φ of the eddy-current probe signal. The observed changes in the eddy-current parameters of the laser-treated alloy are caused by the changes in the structural state of the alloy, particularly, by the high dispersity of the structure, increased content of alloying elements in the solid solution, and residual stresses resulting from accelerated cooling under laser melting. The depth of the molten zone and the homogeneity of the structure at different depths can be estimated by measuring the amplitude A, whereas the presence and level of residual stresses can be estimated by measuring the phase angle φ at different probe excitation frequencies. The results clearly show the advantage of separate measurements of the amplitude A and the phase angle φ from the perspective of eddy-current evaluation of the structural state of the laser-treated alloy.

Keywords

Eddy-current method Cast aluminum alloy Laser heat treatment Structure Residual stresses 

Notes

Acknowledgements

This work was done within the Complex Program of UB RAS, project No. 18-10-1-40, with regard to the studied material and methods of its processing, and within the state order for IES UB RAS, reg. no. AAAA-A18-118020790147-4, with regard to the eddy-current measurements. Optical microscopy was performed in Collective Use Center “Plastometriya” of the Institute of Engineering Science UB RAS.

References

  1. 1.
    Shabel, B.S., Granger, D.A., Truckner, W.G.: Friction and wear of aluminum-silicon alloys. In: Blau, P.J. (ed.) ASM Handbook. V. 18. Friction, Lubrication, and Wear Technology, pp. 785–794. ASM International, Materials Park (1992)Google Scholar
  2. 2.
    Kharanzhevskiy, E.V.: Separation in liquid and the formation of supersaturated solid solutions in Fe–Cu alloys upon rapid laser melting. Phys. Met. Metallogr. 117(9), 889–895 (2016)CrossRefGoogle Scholar
  3. 3.
    Blum, R., Molian, P.: CO2 laser coating of nanodiamond on aluminum using an annular beam. Appl. Surf. Sci. 288, 1–8 (2014)CrossRefGoogle Scholar
  4. 4.
    D’Amato, C., Buhagiar, J., Betts, J.C.: Tribological characteristics of an A356 aluminium alloy laser surface alloyed with nickel and Ni–Ti–C. Appl. Surf. Sci. 313, 720–729 (2014)CrossRefGoogle Scholar
  5. 5.
    Rajamure, R.S., Vora, H.D., Gupta, N., Karewar, S., Srinivasan, S.G., Dahotre, N.B.: Laser surface alloying of molybdenum on aluminum for enhanced wear resistance. Surf. Coat. Technol. 258, 337–342 (2014)CrossRefGoogle Scholar
  6. 6.
    D’Amato, C., Betts, J.C., Buhagiar, J.: Laser surface alloying of an A356 aluminium alloy using nickel and Ni-Ti-C: a corrosion study. Surf. Coat. Technol. 244, 194–202 (2014)CrossRefGoogle Scholar
  7. 7.
    Groth, A., Horstmann, M., Kashaev, N., Huber, N.: Design of local heat treatment for crack retardation in aluminium alloys. Procedia Eng. 114, 271–276 (2015)CrossRefGoogle Scholar
  8. 8.
    Rajamure, R.S., Vora, H.D., Srinivasan, S.G., Dahotre, N.B.: Laser alloyed Al-W coatings on aluminum for enhanced corrosion resistance. Appl. Surf. Sci. 328, 205–214 (2015)CrossRefGoogle Scholar
  9. 9.
    Pakieła, W., Tański, T., Brytan, Z., Labisz, K.: The influence of laser alloying on the structure and mechanical properties of AlMg5Si2Mn surface layers. Appl. Phys. A Mater. Sci. Process. 122(352), 1–9 (2016)Google Scholar
  10. 10.
    Laorden, L.M., Rodrigo, P., Torres, B., Rams, J.: Modification of microstructure and superficial properties of A356 and A356/10%SiCp by selective laser surface melting (SLSM). Surf. Coat. Technol. 309, 1001–1009 (2017)CrossRefGoogle Scholar
  11. 11.
    Savrai, R.A., Malygina, I.Y., Makarov, A.V., Osintseva, A.L., Rogovaya, S.A., Davydova, N.A.: Effect of the composition of absorbing coatings on the structure and properties of a cast aluminum alloy subjected to surface laser heat treatment. Diagn. Resour. Mech. Mater. Struct. 5, 86–105 (2018).  https://doi.org/10.17804/2410-9908.2018.5.086-105 CrossRefGoogle Scholar
  12. 12.
    Rosen, M.: Eddy current analysis of precipitation kinetics in aluminum alloys. Metall. Trans. A 20(4), 605–610 (1989)CrossRefGoogle Scholar
  13. 13.
    Makarov, A.V., Gorkunov, E.S., Kogan, L.K.: Application of the eddy-current method for estimating the wear resistance of hydrogen-alloyed β-titanium alloy BT35. Russ. J. Nondestr. Test. 43(1), 21–26 (2007)CrossRefGoogle Scholar
  14. 14.
    Makarov, A.V., Gorkunov, E.S., Malygina, I.Y., Kogan, L.K., Savrai, R.A., Osintseva, A.L.: Eddy-current testing of the hardness, wear resistance, and thickness of coatings prepared by gas-powder laser cladding. Russ. J. Nondestr. Test. 45(11), 797–805 (2009)CrossRefGoogle Scholar
  15. 15.
    Egorov, A.V., Polyakov, V.V., Salita, D.S., Kolubaev, E.A., Psakhie, S.G., Chernyavskii, A.G., Vorobei, I.V.: Inspection of aluminum alloys by a multi-frequency eddy current method. Def. Technol. 11(2), 99–103 (2015)CrossRefGoogle Scholar
  16. 16.
    Savrai, R.A., Makarov, A.V., Gorkunov, E.S., Kogan, L.K., Soboleva, N.N., Malygina, I.Y., Osintseva, A.L.: Eddy-current testing of fatigue degradation under contact loading of NiCrBSi coatings obtained through gas–powder laser cladding. Russ. J. Nondestr. Test. 51(11), 692–704 (2015)CrossRefGoogle Scholar
  17. 17.
    Savrai, R.A., Makarov, A.V., Gorkunov, E.S., Soboleva, N.N., Kogan, L.K., Malygina, I.Y., Osintseva, A.L., Davydova, N.A.: Eddy-current testing of the fatigue degradation of a gas powder laser clad NiCrBSi–Cr3C2 composite coating under contact fatigue loading. AIP Conf. Proc. 1915(040049), 1–4 (2017).  https://doi.org/10.1063/1.5017397 CrossRefGoogle Scholar
  18. 18.
    Savrai, R.A., Makarov, A.V., Gorkunov, E.S., Soboleva, N.N., Kogan, L.K., Malygina, I.Y., Osintseva, A.L.: Eddy-current testing of fatigue degradation in additionally heat-treated gas powder laser clad NiCrBSi coating under contact fatigue loading. AIP Conf. Proc. 2053(040088), 1–4 (2018).  https://doi.org/10.1063/1.5084526 CrossRefGoogle Scholar
  19. 19.
    Bettaieb, L., Kokabi, H., Poloujadoff, M., Coillot, C.: Modeling some calibrated cracks for E-NDE by a difference method. J. Nondestruct. Eval. 30(3), 117–121 (2011)CrossRefGoogle Scholar
  20. 20.
    Underhill, P.R., Krause, T.W.: Enhancing probability of detection and analysis of bolt hole eddy current. J. Nondestruct. Eval. 30(4), 237–245 (2011)CrossRefGoogle Scholar
  21. 21.
    Tariq, F., Naz, N., Baloch, R.A.: Faisal: characterization of material properties of 2xxx series Al-alloys by non destructive testing techniques. J. Nondestruct. Eval. 31(1), 17–33 (2012)CrossRefGoogle Scholar
  22. 22.
    Kim, J., Le, M., Lee, J., Hwang, Y.H.: Eddy current testing and evaluation of far-side corrosion around rivet in jet-engine intake of aging supersonic aircraft. J. Nondestruct. Eval. 33(4), 471–480 (2014)CrossRefGoogle Scholar
  23. 23.
    Liu, Y., Liu, S., Liu, H., Mandache, C., Liu, Z.: Pulsed eddy current data analysis for the characterization of the second-layer discontinuities. J. Nondestr. Eval. 38(1), 7 (2019).  https://doi.org/10.1007/s10921-018-0545-6 CrossRefGoogle Scholar
  24. 24.
    Nagendran, R., Mohanty, I., Thanikai Arasu, A.V., Baskaran, R.: Transient eddy current NDE system based on fluxgate sensor for the detection of defects in multilayered conducting material. J. Nondestr. Eval. 37(3), 52 (2018).  https://doi.org/10.1007/s10921-018-0511-3 CrossRefGoogle Scholar
  25. 25.
    Ruud, C.O., Green Jr., R.E. (eds.): Nondestructive Methods for Material Property Determination. Plenum Press, New York (1984)Google Scholar
  26. 26.
    Hagemaier, D.J.: Fundamentals of Eddy Current Testing. American Society for Nondestructive Testing, Columbus (1990)Google Scholar
  27. 27.
    Serway, R.A., Jewett, J.W.: Physics for Scientists and Engineers, 6th edn. Thomson Brooks/Cole, Belmont (2004)Google Scholar
  28. 28.
    Gusarov, A.V., Malakhova-Ziablova, I.S., Pavlov, M.D.: Thermoelastic residual stresses and deformations at laser treatment. Phys. Procedia 41, 896–903 (2013)CrossRefGoogle Scholar
  29. 29.
    Van Brussel, B.A., De Hosson, J.T.M.: Residual stresses in the surface layer of laser-treated steels. Mater. Sci. Eng., A 161(1), 83–89 (1993)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Engineering Science, Ural Branch, Russian Academy of SciencesYekaterinburgRussia

Personalised recommendations