Non-destructive Neutron Surface Residual Stress Analysis

  • J. Rebelo KornmeierEmail author
  • M. Hofmann
  • W. M. Gan
  • J. Gibmeier
  • J. Saroun


Diffraction is a powerful tool for investigation of residual as well as applied stresses in engineering materials and components. Both X-ray and neutron diffraction can be used for this purpose. The interest in neutron stress analysis stems from the high penetrating power of neutrons when compared to laboratory X-ray sources, i.e. several cm instead of a few tens of µm in metallic materials. This contribution gives an overview on current instrumental and methodical developments for non-destructive through surface strain measurements, which bridges the gap between X-rays and neutrons analysis.


STRESS-SPEC Surface residual stresses Neutron diffraction Spurious strains Double radial collimators 



The authors gratefully acknowledge the funding by the German Research Foundation (DFG) within the Project HO 3322/2-1, HO3322/2-2 and Czech Science Foundation Project No. 16-08803J, and by the German Research Foundation (DFG) within the Project HO 3322/4-1 and GI 376/11-1.


  1. 1.
    Hofmann, M., Schneider, R., Seidl, G.A., Rebelo Kornmeier, J., Wimpory, R., Garbe, U., Brokmeier, H.G.: The new materials science diffractometer STRESS-SPEC at FRM-II. Physica B 385–386, 1035–1037 (2006)CrossRefGoogle Scholar
  2. 2.
    Brokmeier, H.G., Gan, W.M., Randau, C., Völler, M., Rebelo Kornmeier, J., Hofmann, M.: Texture analysis at neutron diffractometer STRESS-SPEC. Nucl. Instrum. Methods Phys. Res. A 642, 87–92 (2011)CrossRefGoogle Scholar
  3. 3.
    Zinth, V., von Lüders, C., Hofmann, M., Hattendorff, J., Buchberger, I., Erhard, S., Rebelo Kornmeier, J., Jossen, A., Gilles, R.: Lithium plating in lithium-ion batteries at sub-ambient temperatures investigated by in situ neutron diffraction. J. Power Sources 271, 152–159 (2014)CrossRefGoogle Scholar
  4. 4.
    Cavaliere, P. (ed.): Chapter: 16. In: Cold-Spray Coatings. Recent Trends and Future Perspectives, 1st edn. Springer, Cham (2018)Google Scholar
  5. 5.
    Vladimir, L., Andrew, V., Valarezo, A., Sanjay, S.: Neutron through-thickness stress measurements in coatings with high spatial resolution. Mater. Sci. Forum 905, 165–173 (2017)CrossRefGoogle Scholar
  6. 6.
    Ramjaun, T.I., Stone, H.J., Karlsson, L., Gargouhri, M.A., Dalaei, K., Moat, R.J., Bhadeshia, H.K.D.H.: Surface residual stresses in multipass welds produced using low transformation temperature filler alloys. Sci. Technol. Weld. Join. 19(7), 623–630 (2014)CrossRefGoogle Scholar
  7. 7.
    Gibmeier, J., Back, H.C., Mutter, M., Vollert, F., Vaßen, R., Rebelo Kornmeier, J., Mücke, R., Vaßen, R.: Study of stability of microstructure and residual strain after thermal loading of plasma sprayed YSZ by through surface neutron scanning. Physica B 551, 69–78 (2018)CrossRefGoogle Scholar
  8. 8.
    Hutchings, M.T., Withers, P.J., Holden, T.M., Lorentzen, T.: Introduction to the Characterization of Residual Stress by Neutron Diffraction. Taylor and Francis, London (2005)CrossRefGoogle Scholar
  9. 9.
    Webster, P.J., Mills, G., Wang, X.D., Kang, W.P., Holden, T.M.: Impediments to efficient through-surface strain scanning. J. Neutron Res. 3, 223–240 (1995)CrossRefGoogle Scholar
  10. 10.
    Rebelo Kornmeier, J., Gibmeier, J., Hofmann, M.: Minimization of spurious strains by using a Si bent-perfect-crystal monochromator: neutron surface strain scanning of a shot-peened sample. Meas. Sci. Technol. 22, 065705 (2011)CrossRefGoogle Scholar
  11. 11.
    Šaroun, J., Rebelo Kornmeier, J., Hofmann, M., Mikula, P., Vrana, M.: Analytical model for neutron diffraction peak shifts due to the surface effect. J. Appl. Crystallogr. 46, 628–638 (2013)CrossRefGoogle Scholar
  12. 12.
    Köhler, H., Rajput, R., Kahzan, P., Rebelo Kornmeier, J.: On the influence of laser cladding and post-processing strategies on residual stresses in steel specimens. Phys. Procedia 56, 250–261 (2014)CrossRefGoogle Scholar
  13. 13.
    Coppola, R., Crescenzi, F., Gan, W., Hofmann, M., Lie, M., Visca, E., You, J.-H.: Neutron diffraction measurement of residual stresses in an ITER-like tungsten-monoblock type plasma-facing component. Fusion Eng. Des. (2019). CrossRefGoogle Scholar
  14. 14.
    Šaroun, J., Rebelo Kornmeier, J., Gibmeier, J., Hofmann, M.: Treatment of spatial resolution effects in neutron residual strain scanning. Physica B (2018). CrossRefGoogle Scholar
  15. 15.
    Pirling, T.: Neutron strain scanning at interfaces: an optimised beam optics to reduce the surface effect. Mater. Sci. Forum 347–349, 107–112 (2000)CrossRefGoogle Scholar
  16. 16.
    Šaroun, J., Kulda, J.: Raytrace of neutron optical systems with RESTRAX. In: Modern Developments in X-Ray and Neutron Optics. Springer Series in Optical Sciences, vol. 137, pp. 57–68. Springer, Berlin (2008)Google Scholar
  17. 17.
    Defendi, I., Egerland, S., Kastenmüller, A., Mühlbauer, M., Panradl, M., Schöffel, T., Zeitelhack, K.: FRM II Annual Report (2005)Google Scholar
  18. 18.
    Eigenmann, B., Macherauch, E.: Rontgenographische Untersuchung von Spannungszustanden in Werkstoffen. Mater.-wiss. Werkst. 27, 426–437 (1996)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • J. Rebelo Kornmeier
    • 1
    Email author
  • M. Hofmann
    • 1
  • W. M. Gan
    • 2
  • J. Gibmeier
    • 3
  • J. Saroun
    • 4
  1. 1.Heinz Maier-Leibnitz Zentrum (MLZ) FRM IITechnische Universität MünchenMunichGermany
  2. 2.German Engineering Materials Centre at MLZHelmholtz-Zentrum GeesthachtGeesthachtGermany
  3. 3.Karlsruhe Institute of TechnologyInstitute for Applied MaterialsKarlsruheGermany
  4. 4.Nuclear Physics Institute of the CAS, v.v.i.RezCzech Republic

Personalised recommendations