Advertisement

A Cumulative Sums Algorithm for Segmentation of Digital X-ray Images

  • S. E. Vorobeychikov
  • S. V. ChakhlovEmail author
  • V. A. Udod
Article

Abstract

A mathematical model of digital X-ray image of the test object is presented for the case when the main type of image distortion is the noise due to the quantum nature of the radiation. The new multilevel cumulative sums algorithm for automatic image segmentation is proposed. The algorithm is based on the edge detection of the segments homogeneous in brightness along the image rows and columns by repeatedly applying the cumulative sums procedure. The efficiency of the proposed algorithm is compared with the known threshold and Leader algorithms. The comparison was performed on simulated images as well as on the X-ray image of a weld. The mean square errors for the new algorithm were about two and three times less than for the threshold and Leader algorithms, correspondingly.

Keywords

Inspected object Mathematical model Digital X-ray image Segmentation algorithms 

Notes

Acknowledgments

The research is carried out at Tomsk Polytechnic University within the frameworks of Tomsk Polytechnic University Competitiveness Enhancement Program Grant and Tomsk State University Competitiveness Enhancement Program Grant. This study was partly supported by The Ministry of Education and Science of the Russian Federation, Goszadanie No 2.3208.2017/4.6.

References

  1. 1.
    Vavilov, V.P., Nesteruk, D.A.: Active thermal inspection of composite materials with the use of neural networks. Russ. J. Nondestr. Test. 47(10), 655–663 (2011).  https://doi.org/10.1134/S1061830911100160 CrossRefGoogle Scholar
  2. 2.
    Völker, C., Shokouhi, P.: Clustering based multi sensor data fusion for honeycomb detection in concrete. J. Nondestruct. Eval. 34(4), 1–10 (2015).  https://doi.org/10.1007/s10921-015-0307-7 CrossRefGoogle Scholar
  3. 3.
    Baniukiewicz, P.: Automated defect recognition and identification in digital radiography. J. Nondestruct. Eval. 33(3), 327–334 (2014).  https://doi.org/10.1007/s10921-013-0216-6 CrossRefGoogle Scholar
  4. 4.
    Rathod, V.R., Anand, R.S., Ashok, A.: A comparative study of different segmentation techniques for detection of flaws in NDE weld images. J Nondestruct. Eval. 31(1), 1–16 (2012).  https://doi.org/10.1080/10589759.2011.645820 CrossRefGoogle Scholar
  5. 5.
    Vorobeichikov, S.E., Fokin, V.A., Udod, V.A., Temnik, A.K.: A study of two image recognition algorithms for the classification of flaws in a test object according to its digital image. Russ. J. Nondestr. Test. 51(10), 644–651 (2015).  https://doi.org/10.1134/S1061830915100101 CrossRefGoogle Scholar
  6. 6.
    Shubochkin A.E.: Development of methods and means of Eddy current and magnetic inspection of metal rolling for an estimation of its residual resource. In: Abstract of the Dissertation of Doctor of Technical Science, Moscow (2014) (in Russian) Google Scholar
  7. 7.
    Fu, K.S., Mui, J.K.: A survey on image segmentation. Pattern Recogn. 13(1), 3–16 (1981)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Zakharov A.V., Kol’tsov P.P., Kotovich N.V., Kravchenko A.A., Kutsaev A.S., Osipov A.S.: Criteria for assessing the quality of segmentation of images. In: Proceedings of the Research Institute for System Studies of the Russian Academy of Sciences, 2(2), pp. 87–99 (2012) (in Russian) Google Scholar
  9. 9.
    Cheng, H.D., Jiang, X.H., Sun, Y., Wang, J.: Color image segmentation: advances and prospects. Pattern Recogn. 34(12), 2259–2281 (2001)CrossRefGoogle Scholar
  10. 10.
    Pal, N.R., Pal, S.K.: A review on image segmentation techniques. Pattern Recogn. 26(9), 1277–1294 (1993)CrossRefGoogle Scholar
  11. 11.
    Samoilenko, D.E.: Structural image segmentation. Artif. Intell. 4, 521–528 (2004)Google Scholar
  12. 12.
    Pratt, W.K.: Digital Image Processing, 3rd edn. Wiley, New York (2001).  https://doi.org/10.1002/0471221325 CrossRefzbMATHGoogle Scholar
  13. 13.
    Ogorodnikov S.A.: Recognition of materials during radiation customs control based on a linear electron accelerator. The Dissertation of the Candidate of Technical Sciences: 01.04.20, St. Petersburg. (2002) (in Russian) Google Scholar
  14. 14.
    Park, J.S., Kim, J.K.: Calculation of effective atomic number and normal density using a source weighting method in a dual energy X-ray inspection system. J. Korean Phys. Soc. 59(4), 2709–2713 (2011)CrossRefGoogle Scholar
  15. 15.
    Klimenov, V.A., Temnik, A.K., Osipov, S.P.: Identification of the substance of a test object using the dual-energy method. Russ. J. Nondestr. Test. 49(11), 642–649 (2015)CrossRefGoogle Scholar
  16. 16.
    Gil, Y., Oh, Y., Cho, M., Namkung, W.: Radiography simulation on single-shot dual-spectrum X-ray for cargo inspection system. Appl. Radiat. Isot. 69(2), 389–393 (2011)CrossRefGoogle Scholar
  17. 17.
    Späth, H.: Cluster-Analyse-Algorithmen zur Objektklassifizierung und Datenreduktion. R.OldenBourg, Verlag GmbH München, Wien (1977)zbMATHGoogle Scholar
  18. 18.
    Overview of K-Means Clustering: Web-page by Prof. Miriam Leeser. http://www.ece.neu.edu/groups/rpl/kmeans/
  19. 19.
    Pisarevski, A.N., Chernjavski, A.F., Afanaciev, G.K.: Systems of Technical Vision (Fundamental Principles, Hardware and Software). Mashinostroenie. Leningr. Branch, St. Petersburg (1988). (in Russian) Google Scholar
  20. 20.
    Haralick, R.M., Shapiro, L.G.: Computer and Robot Vision. Addison-Wesley Longman Publishing. Co., Inc., Boston (1992)Google Scholar
  21. 21.
    Page, E.S.: Continuous inspection schemes. Biometrika 41(1), 141–154 (1954)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Pollak, M.: Optimal detection of a change in distribution. Ann. Stat. 13, 206–227 (1985)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Vorobeichikov, S.E.: Detection of changes in the mean of a sequence of random variables. Autom. Remote Control. 59(3), 344–348 (1998)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Levashkina, A.O., Porshnev, S.V.: Survey of supervisory criteria for assessing the quality of image segmentation. Proc. Tomsk Polytech. Univ. 313(5), 28–33 (2008)Google Scholar
  25. 25.
    Zhang, Y.J.: Advances in Image and Video Segmentation. IBM Press, Upper Saddle River (2006)CrossRefGoogle Scholar
  26. 26.
    Osipov, S.P., Libin, E.E., Chakhlov, S.V., Osipov, O.S., Shtein, A.M.: Parameter identification method for dual-energy X-ray imaging. NDT E Int. 76, 38–42 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • S. E. Vorobeychikov
    • 1
  • S. V. Chakhlov
    • 2
    Email author
  • V. A. Udod
    • 1
    • 2
  1. 1.Tomsk State UniversityTomskRussia
  2. 2.School of Non-Destructive Testing & SecurityTomsk Polytechnic UniversityTomskRussia

Personalised recommendations