A Calibration Technique for Ultrasonic Immersion Transducers and Challenges in Moving Towards Immersion Based Harmonic Imaging

  • Sunil Kishore ChakrapaniEmail author
  • Daniel J. Barnard


The present article describes the calibration of ultrasonic immersion transducers using reciprocity technique. A step-by-step procedure and instrumentation requirements for transducer calibration are presented. Challenges encountered during the calibration experiment such as diffraction and attenuation corrections, and mismatched electrical impedances were also explored. The calibrated transducer was used to measure the acoustic nonlinearity parameter (β) of distilled water using the finite amplitude method. The objective of the current study is to identify potential challenges while moving towards a nonlinear immersion scanning technique for immersed engineering solids. Challenges such as effect of additives (corrosion inhibitors, surfactants etc.), misalignment of transducers, and effect of longer propagation paths were explored. Additives to distilled water were found to decrease the β of the mixture, and for an axial transducer misalignment of 2 mm, β was observed to increase by a factor of 2. Finally, the effect of propagation distance and excitation amplitude is shown.


Ultrasonics Transducer calibration Nonlinearity parameter 



This work was supported by the Industry/University cooperative Research Program of the Center for Nondestructive Evaluation at Iowa State University. The authors would also like to thank Dr. Jenifer Saldanha for proofreading the manuscript.


  1. 1.
    Carstensen, Bacon, D.R.: In: Hamilton, M.F., Blackstock, D.T. (eds.) Nonlinear Acoustics, chap. 15, pp. 421–448. Academic Press, San Diego (1998)Google Scholar
  2. 2.
    Matlack, K.H., Kim, J.-Y., Jacobs, L.J., Qu, J.: Review of second harmonic generation measurement techniques for material state determination in metals. J. Nondestr. Eval. 34, 273 (2015)CrossRefGoogle Scholar
  3. 3.
    Hurley, D.C., Yost, W.T.: ES Boltz and CM Fortunko (1997) A Comparison of Three Techniques to Determine the Nonlinear Ultrasonic Parameter β. Review of Progress in Quantitative Nondestructive Evaluation. Springer, Boston (1997)Google Scholar
  4. 4.
    Hurley, D.C., Fortunko, C.M.: Determination of the nonlinear ultrasonic parameter using a Michelson interferometer. Meas. Sci. Technol. 8, 634 (1997)CrossRefGoogle Scholar
  5. 5.
    Cantrell, J.H.: Nondestructive Evaluation of Metal Fatigue Using Nonlinear Acoustics. Review of Progress in Quantitative Nondestructive Evaluation (2009)Google Scholar
  6. 6.
    Cantrell, J.H., Salama, K.: Acoustoelastic characterisation of materials. Int. Mater. Rev. 36, 125–145 (1991)CrossRefGoogle Scholar
  7. 7.
    Potter, J.N., Croxford, A.J., Wilcox, P.D.: Nonlinear ultrasonic phased array imaging. Phys. Rev. Lett. 113, 144301 (2014)CrossRefGoogle Scholar
  8. 8.
    Ulrich, T.J., Johnson, P.A., Sutin, A.: Imaging nonlinear scatterers applying the time reversal mirror. J. Acoust. Soc. Am. 119, 1514–1518 (2006)CrossRefGoogle Scholar
  9. 9.
    Cheng, J., Potter, J.N., Croxford, A.J., Drinkwater, B.W.: Monitoring fatigue crack growth using nonlinear ultrasonic phased array imaging. Smart Mater. Struct. 26, 055006 (2017)CrossRefGoogle Scholar
  10. 10.
    Solodov, I., Rahammer, M., Gulnizkij, N., Kreutzbruck, M.: Noncontact sonic NDE and defect imaging via local defect resonance. J. Nondestr. Eval. 35, 48 (2016)CrossRefGoogle Scholar
  11. 11.
    Kazakov, V.V., Johnson, P.A.: Nonlinear wave modulation imaging. Nonlinear Acoust. Begin. 21st Century 2, 763–766 (2002)Google Scholar
  12. 12.
    Lim, H.J., Song, B., Park, B., Sohn, H.: Noncontact fatigue crack visualization using nonlinear ultrasonic modulation. NDT E Int. 73, 8–14 (2015)CrossRefGoogle Scholar
  13. 13.
    Gong, X.-F., Ruo, F., Cheng-ya, Z., Tao, S.: Ultrasonic investigation of the nonlinearity parameter B/A in biological media. J. Acoust. Soc. Am. 76, 949–950 (1984)CrossRefGoogle Scholar
  14. 14.
    Gong, X.-F., Zhu, Z.-M., Shi, T., Huang, J.-H.: Determination of the acoustic nonlinearity parameter in biological media using FAIS and ITD methods. J. Acoust. Soc. Am. 86, 1–5 (1989)CrossRefGoogle Scholar
  15. 15.
    Zhu, Z., Roos, M.S., Cobb, W.N., Jensen, K.: Determination of the acoustic nonlinearity parameter B/A from phase measurements. J. Acoust. Soc. Am. 74, 1518–1521 (1983)CrossRefGoogle Scholar
  16. 16.
    Khelladi, H., Plantier, F., Daridon, J.L., Djelouah, H.: Measurement under high pressure of the nonlinearity parameter B/A in glycerol at various temperatures. Ultrasonics 49, 668–675 (2009)CrossRefGoogle Scholar
  17. 17.
    Plantier, F., Daridon, J.-L., Lagourette, B.: Measurement of the B/A nonlinearity parameter under high pressure: application to water. J. Acoust. Soc. Am. 111, 707–715 (2002)CrossRefGoogle Scholar
  18. 18.
    Dace, G.E., Thompson, R.B., Brasche, L.J.H., Rehbein, D.K., Buck, O.: Nonlinear Acoustics, a Technique to Determine Microstructural Changes in Materials. Review of Progress in Quantitative Nondestructive Evaluation (1991)Google Scholar
  19. 19.
    Dace, G.E., Thompson, R.B., Buck, O.: Measurement of the Acoustic Harmonic Generation for Materials Characterization Using Contact Transducers. Review of Progress in Quantitative Nondestructive Evaluation, vol. 11B (1992)Google Scholar
  20. 20.
    Sittig, E.K.: Transmission parameters of thickness-driven piezoelectric transducers arranged in multilayer configurations. IEEE Trans. Son. Ultrason. 14, 167–174 (1967)CrossRefGoogle Scholar
  21. 21.
    Yost, W.T., Cantrell, J.H.: Absolute ultrasonic displacement amplitude measurements with a submersible electrostatic acoustic transducer. Rev. Sci. Instrum. 63(9), 4182–4188 (1992)CrossRefGoogle Scholar
  22. 22.
    Barnard, D.J., Chakrapani, S.K.: Measurement of nonlinearity parameter (β) of water using commercial immersion transducers. In: AIP Conference Proceedings (2016)Google Scholar
  23. 23.
    Rogers, P.H., Van Buren, A.L.: An exact expression for the Lommel-diffraction correction integral. J. Acoust. Soc. Am. 55, 724–728 (1974)CrossRefGoogle Scholar
  24. 24.
    Krautkrämer, J., Krautkrämer, H.: Ultrasonic Testing of Materials. Springer, Berlin (1990)CrossRefGoogle Scholar
  25. 25.
    Cobb, W.N.: Finite amplitude method for the determination of the acoustic nonlinearity parameter B/A. J. Acoust. Soc. Am. 73, 1525–1531 (1983)CrossRefGoogle Scholar
  26. 26.
    Pantea, C., Osterhoudt, C.F., Sinha, D.N.: Determination of acoustical nonlinear parameter β of water using the finite amplitude method. Ultrasonics 53, 1012–1019 (2013)CrossRefGoogle Scholar
  27. 27.
    Adler, L., Hiedemann, E.A.: Determination of the nonlinearity parameter B/A for water and m-xylene. J. Acoust. Soc. Am. 34, 410–412 (1962)CrossRefGoogle Scholar
  28. 28.
    Law, W.K., Frizzell, L.A., Dunn, F.: Ultrasonic determination of the nonlinearity parameter B/A for biological media. J. Acoust. Soc. Am. 69, 1210–1212 (1981)CrossRefGoogle Scholar
  29. 29.
    Breazeale, M.A., Thompson, D.O.: Finite-amplitude ultrasonic waves in aluminum. Appl. Phys. Lett. 3, 77–78 (1963)CrossRefGoogle Scholar
  30. 30.
    Yost, W.T., Cantrell Jr., J.H., Breazeale, M.A.: Ultrasonic nonlinearity parameters and third-order elastic constants of copper between 300 and 3° K. J. Appl. Phys. 52, 126–128 (1981)CrossRefGoogle Scholar
  31. 31.
    Breazeale, M.A., Philip, J.: Determination of third-order elastic constants from ultrasonic harmonic generation measurement. In: Mason, W.P., Thurston, R.N. (eds.) Physical Acoustics, vol. XVII, pp. 1–60. Academic Press, New York (1984)Google Scholar
  32. 32.
    Barnard, D.J., McKenna, M.J., Foley, J.C.: Absolute displacement calibration techniques for commercial superheterodyne receivers. In: AIP Conference Proceedings (2001)Google Scholar
  33. 33.
    Na, J.K., Yost, W.T., Cantrell, J.H., Kessel, G.L.: Effects of surface roughness and nonparallelism on the measurement of the acoustic nonlinearity parameter in steam turbine blades. In: AIP Conference Proceedings (2000)Google Scholar
  34. 34.
    Prieur, F., Johansen, T.F., Holm, S., Torp, H.: Fast simulation of second harmonic ultrasound field using a quasi-linear method. J. Acoust. Soc. Am. 131, 4365–4375 (2012)CrossRefGoogle Scholar
  35. 35.
    Meredith, G.R.: Cascading in optical third-harmonic generation by crystalline quartz. Phys. Rev. B 24, 5522 (1981)CrossRefGoogle Scholar
  36. 36.
    Blackstock, D.T., Hamilton, M.F., Pierce, A.D.: In: Hamilton, M.F., Blackstock, D.T. (eds.) Nonlinear Acoustics, chap. 4, pp. 65–150. Academic Press, San Diego (1998)Google Scholar
  37. 37.
    Fay, R.D.: Plane sound waves of finite amplitude. J. Acoust. Soc. Am. 3, 222–241 (1931)CrossRefGoogle Scholar
  38. 38.
    Jeong, H., Zhang, S., Barnard, D., Li, X.: Significance of accurate diffraction corrections for the second harmonic wave in determining the acoustic nonlinearity parameter. AIP Adv. 5, 097179 (2015)CrossRefGoogle Scholar
  39. 39.
    Ingenito, F., Williams Jr., A.O.: Calculation of second-harmonic generation in a piston beam. J. Acoust. Soc. Am. 49, 319–328 (1971)CrossRefGoogle Scholar
  40. 40.
    Chakrapani, S.K., Howard, A., Barnard, D.: Influence of surface roughness on the measurement of acoustic nonlinearity parameter of solids using contact piezoelectric transducers. Ultrasonics 84, 112–118 (2018)CrossRefGoogle Scholar
  41. 41.
    Vander Meulen, F., Haumesser, L.: Layer contributions to the nonlinear acoustic radiation from stratified media. Ultrasonics 72, 34–41 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringMichigan State UniversityEast LansingUSA
  2. 2.Center for Nondestructive EvaluationIowa State UniversityAmesUSA

Personalised recommendations