Advertisement

Influence of Local Mechanical Parameters on Ultrasonic Wave Propagation in Large Forged Steel Ingots

  • Frederic Dupont-MarilliaEmail author
  • Mohammad Jahazi
  • Serge Lafreniere
  • Pierre Belanger
Article

Abstract

In numerous applications, high strength forged steel requires uncompromising quality and mechanical properties to provide advanced performances. Ultrasonic testing are commonly used for material characterization to measure mechanical properties and for nondestructive testing to detect flaws or other features contained in metallic objects. In steel blocks of relatively small dimensions (at least two dimensions not exceeding a few centimeters), temperature and homogeneity are well controlled during the solidification. However, these parameters may become difficult to control during manufacturing of large objects. Forging and heat treatments are known to modify the microstructure and/or the grain size, therefore affecting elastic properties, and consequently, the ultrasonic inspection reliability. In this context, the relationship between ultrasonic group and phase velocity variations with local properties of a forged and heat-treated \(40{,}000~\mathrm {kg}\) bainitic steel block manufactured in an industrial setting was investigated. The block was cut into a \(20~\mathrm {mm}\) thick slice that was then divided into 875 parallelepiped samples. A subset was selected for ultrasonic measurements, metallurgical study, and chemical analysis. Ultrasonic phase velocity showed a strong correlation with grain size, whereas group velocity was shown to vary as a function of the Young’s modulus and the chemical composition. Tensile testing was performed to validate the Young’s modulus calculated from the ultrasonic group velocities.

Keywords

First ultrasonic testing Group velocity Phase velocity Large dimensions Forged steel 

Notes

Acknowledgements

This work was supported by NSERC Engage Grant EGP 470154-14.

References

  1. 1.
    Krautkramer, J., Krautkramer, H.: Ultrasonic Testing of Materials, pp. 533–534. Springer, Berlin (2013)Google Scholar
  2. 2.
    Chassignole, B., El Guerjouma, R., Ploix, M.A., Fouquet, T.: Ultrasonic and structural characterization of anisotropic austenitic stainless steel welds: towards a higher reliability in ultrasonic non-destructive testing. NDT & E Int. 43(4), 273–282 (2010)CrossRefGoogle Scholar
  3. 3.
    Sinczak, J., Majta, J., Glowacki, M., Pietrzyk, M.: Prediction of mechanical properties of heavy forgings. J. Mater. Process. Technol. 80, 166–173 (1998)CrossRefGoogle Scholar
  4. 4.
    Ghassemali, E., Tan, M.-J., Wah, C.B., Jarfors, A.E.W., Lim, S.C.V.: Grain size and workpiece dimension effects on material flow in an open-die micro-forging/extrusion process. Mater. Sci. Eng. A 582, 379–388 (2013)CrossRefGoogle Scholar
  5. 5.
    Price, J.W.H., Alexander, J.M.: Specimen geometries predicted by computer model of high deformation forging. Int. J. Mech. Sci. 21(7), 417–430 (1979)CrossRefGoogle Scholar
  6. 6.
    Park, J.J., Kobayashi, S.: Three-dimensional finite element analysis of block compression. Int. J. Mech. Sci. 26(3), 165–176 (1984)CrossRefGoogle Scholar
  7. 7.
    Cho, J.R., Jeong, H.S., Cha, D.J., Bae, W.B., Lee, J.W.: Prediction of microstructural evolution and recrystallization behaviors of a hot working die steel by FEM. J. Mater. Process. Technol. 160(1), 1–8 (2005)CrossRefGoogle Scholar
  8. 8.
    Wu, M., Li, J., Kharicha, A., Ludwig, A.: Using a three-phase mixed columnar-equiaxed solidification model to study macrosegregation in ingot castings: perspectives and limitations. In: Liquid Metal Processing & Casting, p. 171, Springer, Cham (2013)Google Scholar
  9. 9.
    Li, J., Wu, M., Ludwig, A., Kharicha, A.: Simulation of macrosegregation in a 2.45-ton steel ingot using a three-phase mixed columnar-equiaxed model. Int. J. Heat Mass Transf. 72, 668–679 (2014)CrossRefGoogle Scholar
  10. 10.
    Tanzer, R., Schutzenhofer, W., Reiter, G., Fauland, H.-P., Konozsy, L., Ishmurzin, A., Wu, M., Ludwig, A.: Validation of a multiphase model for the macrosegregation and primary structure of high-grade steel ingots. Metall. Mater. Trans. B 40(3), 305–311 (2009)CrossRefGoogle Scholar
  11. 11.
    Gu, J.P., Beckermann, C.: Simulation of convection and macrosegregation in a large steel ingot. Metall. Mater. Trans. A 30(5), 1357–1366 (1999)CrossRefGoogle Scholar
  12. 12.
    Ali, M.G.S., Elsayed, N.Z., Eid, A.M.: Ultrasonic attenuation and velocity in steel standard reference blocks. Rom. J. Acoust. 1, 33–38 (2013)Google Scholar
  13. 13.
    Ricci, M., Senni, L., Burrascano, P., Borgna, R., Neri, S., Calderini, M.: Pulse-compression ultrasonic technique for the inspection of forged steel with high attenuation. Insight Non-Destruct. Test. Cond. Monit. 54(2), 91–95 (2012)CrossRefGoogle Scholar
  14. 14.
    Demirli, R., Saniie, J.: Model-based estimation of ultrasonic echoes. Part II: nondestructive evaluation applications. IEEE Trans. Ultrason. 48(3), 803–811 (2001)CrossRefGoogle Scholar
  15. 15.
    Fidahoussen, A.: Developpement d’une methode de reconstruction ultrasonore pour la localisation et la caracterisation de defauts. PhD thesis, Universite Paris Sud-Paris XI (2012)Google Scholar
  16. 16.
    Moore, P.O.: Nondestructive Testing Handbook, Ultrasonic Testing, vol. 7, pp. 319–321. American Society for Nondestructive Testing Inc., Columbus (2007)Google Scholar
  17. 17.
    Jeong, H, Lee, J.-S., Lee, C.-H.: Time reversal beam focusing of ultrasonic array transducer on a defect in a two layer medium. In: AIP Conference Proceedings, vol. 1211, pp. 948–953. AIP Publishing (2010)Google Scholar
  18. 18.
    Mordant, N., Prada, C., Fink, M.: Highly resolved detection and selective focusing in a waveguide using the D.O.R.T. method. J. Acoust. Soc. Am. 105(5), 2634–2642 (1999)CrossRefGoogle Scholar
  19. 19.
    Connolly, G .D., Lowe, M .J .S., Temple, J a G, Rokhlin, S .I.: Correction of ultrasonic array images to improve reflector sizing and location in inhomogeneous materials using a ray-tracing model. J. Acoust. Soc. Am. 127(5), 2802–2812 (2010)CrossRefGoogle Scholar
  20. 20.
    Prasad, R., Kumar, S.: Study of the influence of deformation and thermal treatment on the ultrasonic behaviour of steel. J. Mater. Process. Technol. 42(1), 171 (1994)CrossRefGoogle Scholar
  21. 21.
    Jeong, H., Hsu, D.K.: Quantitative estimation of material properties of porous ceramics by means of composite micromechanics and ultrasonic velocity. NDT & E Int. 29(2), 95–101 (1996)CrossRefGoogle Scholar
  22. 22.
    Latiff, R.H., Fiore, N.F.: Ultrasonic attenuation and velocity in two-phase microstructures. J. Nucl. Mater. 57(6), 1441–1447 (1975)Google Scholar
  23. 23.
    Nam, Y.H., Kim, Y.-I., Nahm, S.H.: Evaluation of fracture appearance transition temperature to forged 3cr 1mo 0.25v steel using ultrasonic characteristics. Mater. Lett. 60(29–30), 3577–3581 (2006)CrossRefGoogle Scholar
  24. 24.
    Barry Wiskel, J., Kennedy, J., Ivey, D.G., Henein, H.: Ultrasonic velocity and attenuation measurements in l80 steel and their correlation with tensile properties. In: 19th World Conference on Non-destructive Testing (2016)Google Scholar
  25. 25.
    Palanichamy, P., Joseph, A., Jayakumar, T., Raj, B.: Ultrasonic velocity measurements for estimation of grain size in austenitic stainless steel. NDT & E Int. 28(3), 179–185 (1995)CrossRefGoogle Scholar
  26. 26.
    Thompson, R.B., Gray, T.A.: A model relating ultrasonic scattering measurements through liquid solid interfaces to unbounded medium scattering amplitudes. J. Acoust. Soc. Am. 74(4), 1279–1290 (1983)CrossRefGoogle Scholar
  27. 27.
    Bedetti, T., Dorval, V., Jenson, F., Derode, A.: Characterization and modeling of ultrasonic structural noise in the multiple scattering regime. In: AIP Conference Proceedings, pp. 1158–1165 (2013)Google Scholar
  28. 28.
    Haïat, G., Lhémery, A., Renaud, F., Padilla, F., Laugier, P., Naili, S.: Velocity dispersion in trabecular bone: influence of multiple scattering and of absorption. J. Acoust. Soc. Am. 124(6), 4047–4058 (2008)CrossRefGoogle Scholar
  29. 29.
    Jenson, F., Padilla, F., Laugier, P.: Prediction of frequency-dependent ultrasonic backscatter in cancellous bone using statistical weak scattering model. Ultrasound Med. Biol. 29, 455–464 (2003)CrossRefGoogle Scholar
  30. 30.
    Chentouf, S.M., Jahazi, M., Lapierre-Boire, L.-P., Godin, S.: Characteristics of austenite transformation during post forge cooling of large-size high strength steel ingots. Metallogr. Microstruct. Anal. 3(4), 281–297 (2014)CrossRefGoogle Scholar
  31. 31.
    Recker, D., Franzke, M., Hirt, G., Rech, R., Steingieber, K.: Grain size prediction during open die forging processes. Metall. Ital. 102(9), 29–35 (2010)Google Scholar
  32. 32.
    Loucif, A., Ben Fredj, E., Jahazi, M., Lapierre-Boire, L.-P., Tremblay, R., Beauvais, R.: Analysis of macrosegregation in large size forged ingot of high strength steel. In: The 6th International Congress on the Science and Technology of Steelmaking (ICS2015). Beijing (China) (2015)Google Scholar
  33. 33.
    Miettinen, J.: Calculation of solidification-related thermophysical properties for steels. Metall. Mater. Trans. B 28(2), 281–297 (1997)CrossRefGoogle Scholar
  34. 34.
    Drain, L.E.: The Laser Doppler Technique. Wiley, New York (1980)Google Scholar
  35. 35.
    Laux, D., Cros, B., Despaux, G., Baron, D.: Ultrasonic study of UO2: effects of porosity and grain size on ultrasonic attenuation and velocities. J. Nucl. Mater. 300(2), 192–197 (2002)CrossRefGoogle Scholar
  36. 36.
    Dubois, M., Militzer, M., Moreau, A., Bussiére, J.F.: A new technique for the quantitative real-time monitoring of austenite grain growth in steel. Scr. Mater. 42(9), 867–874 (2000)CrossRefGoogle Scholar
  37. 37.
    Khan, S.Z., Khan, T.M., Joya, Y.F., Khan, M.A., Ahmed, S., Shah, A.: Assessment of material properties of AISI 316l stainless steel using non-destructive testing. Nondestruct. Test. Eval. 31(4), 360–370 (2016)CrossRefGoogle Scholar
  38. 38.
    Kruger, S.E., Moreau, A., Bescond, C., Monchalin, J.-P.: Real-time sensing of metallurgical transformations by laser-ultrasound. In: 16th World Conference on Nondestructive Testing, Montreal, Canada, August 30 September 3, 2004: WCNDT: book of abstractsGoogle Scholar
  39. 39.
    Ratassepp, M., Rao, J., Fan, Z.: Quantitative imaging of Young’s modulus in plates using guided wave tomography. NDT & E Int. 94, 22–30 (2018)CrossRefGoogle Scholar
  40. 40.
    Falardeau, T., Belanger, P.: Ultrasound tomography in bone mimicking phantoms: simulations and experiments. J. Acoust. Soc. Am. 144(5), 2937–2946 (2018)CrossRefGoogle Scholar
  41. 41.
    Dupont-Marillia, F., Jahazi, M., Lafreniere, S., Belanger, P.: Design and optimisation of a phased array transducer for ultrasonic inspection of large forged steel ingots. NDT & E Int. 103, 119–129 (2019)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringEcole de technologie superieureMontrealCanada
  2. 2.Finkl Steel SorelSt-Joseph-de-SorelCanada

Personalised recommendations