Advertisement

Nondestructive Spot Weld Quality Evaluation by Measurement of Structural Vibration Transfer Through Joined Panels

  • Sang Mok Park
  • Yunsang Kwak
  • Jongho Lee
  • Junhong ParkEmail author
Article

Abstract

A nondestructive test method using structural vibrations was proposed for spot weld quality evaluations. The wave propagations in multi-spot-welded structures were analyzed using the spectral element method. The resonance frequency showed dependence on the spot stiffness due to the out-of-phase vibration modes locally generated at the testing spot. The experiments to measure the local vibrations were performed. A vehicle specimen made of multi-spot-welded ultra-high-strength steel panels was used for the evaluation. After exciting one side of the spot by an electric shaker, the resulting vibrations were measured on the other side. The transmitted responses by the input vibrations at the testing spot were obtained. The resonance frequencies depended on the wavelength for local vibrations in the specimen. The weld stiffness was predicted using the vibration transfer function. The estimated weld quality was compared to the actual spot diameter. The weld quality had influence on the dynamic properties and resonant modal vibration of the part under tests. To minimize the effect of the geometric and boundary conditions, the local vibrations affected only by the weld quality was used in this study. The proposed method enabled the efficient structural integrity evaluation using the vibration measurements of the welded structure.

Keywords

Spot weld quality Nondestructive evaluation Local vibration Wave propagation Vehicle structure 

Notes

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), which is funded by the Ministry of Education, Science, and Technology (NRF-2019R1A2C1005619).

References

  1. 1.
    Donders, S., Brughmans, M., Hermans, L., Liefooghe, C., Van der Auweraer, H., Desmet, W.: The robustness of dynamic vehicle performance to spot weld failures. Finite Elem. Anal. Des. 42(8–9), 670–682 (2006)CrossRefGoogle Scholar
  2. 2.
    Donders, S., Brughmans, M., Hermans, L., Tzannetakis, N.: The effect of spot weld failure on dynamic vehicle performance. Sound Vib. 39(4), 16–25 (2005)Google Scholar
  3. 3.
    Green, R.E.: Non-contact ultrasonic techniques. Ultrasonics 42(1), 9–16 (2004)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Ogilvy, J., Temple, J.: Diffraction of elastic waves by cracks: application to time-of-flight inspection. Ultrasonics 21(6), 259–269 (1983)CrossRefGoogle Scholar
  5. 5.
    Mi, B., Ume, C.: Real-time weld penetration depth monitoring with laser ultrasonic sensing system. J. Manuf. Sci. Eng. 128(1), 280–286 (2006)CrossRefGoogle Scholar
  6. 6.
    Chassignole, B., El Guerjouma, R., Ploix, M.-A., Fouquet, T.: Ultrasonic and structural characterization of anisotropic austenitic stainless steel welds: towards a higher reliability in ultrasonic non-destructive testing. NDT E Int. 43(4), 273–282 (2010)CrossRefGoogle Scholar
  7. 7.
    Petcher, P., Dixon, S.: Weld defect detection using PPM EMAT generated shear horizontal ultrasound. NDT E Int. 74, 58–65 (2015)CrossRefGoogle Scholar
  8. 8.
    Garnier, C., Pastor, M.-L., Eyma, F., Lorrain, B.: The detection of aeronautical defects in situ on composite structures using non destructive testing. Compos. Struct. 93(5), 1328–1336 (2011)CrossRefGoogle Scholar
  9. 9.
    Meola, C., Carlomagno, G.M., Squillace, A., Giorleo, G.: The use of infrared thermography for nondestructive evaluation of joints. Infrared Phys. Technol. 46(1), 93–99 (2004)CrossRefGoogle Scholar
  10. 10.
    Zou, Y., Du, D., Chang, B., Ji, L., Pan, J.: Automatic weld defect detection method based on Kalman filtering for real-time radiographic inspection of spiral pipe. NDT E Int. 72, 1–9 (2015)CrossRefGoogle Scholar
  11. 11.
    Anand, R., Kumar, P.: Flaw detection in radiographic weld images using morphological approach. NDT E Int. 39(1), 29–33 (2006)CrossRefGoogle Scholar
  12. 12.
    Sinclair, A., Fortin, J., Shakibi, B., Honarvar, F., Jastrzebski, M., Moles, M.: Enhancement of ultrasonic images for sizing of defects by time-of-flight diffraction. NDT E Int. 43(3), 258–264 (2010)CrossRefGoogle Scholar
  13. 13.
    Gaspar, B., Garbatov, Y., Soares, C.G.: Effect of weld shape imperfections on the structural hot-spot stress distribution. Ships Offshore Struct. 6(1–2), 145–159 (2011)CrossRefGoogle Scholar
  14. 14.
    Hernandez, B.V., Kuntz, M., Khan, M., Zhou, Y.: Influence of microstructure and weld size on the mechanical behaviour of dissimilar AHSS resistance spot welds. Sci. Technol. Weld. Join. 13(8), 769–776 (2008)CrossRefGoogle Scholar
  15. 15.
    Balasubramanian, V., Guha, B.: Influence of weld size on fatigue crack growth characteristics of flux cored arc welded cruciform joints. Mater. Sci. Eng. A 265(1), 7–17 (1999)CrossRefGoogle Scholar
  16. 16.
    Xing, S., Dong, P., Wang, P.: A quantitative weld sizing criterion for fatigue design of load-carrying fillet-welded connections. Int. J. Fatigue 101, 448–458 (2017)CrossRefGoogle Scholar
  17. 17.
    Chen, F., Sun, S., Ma, Z., Tong, G., Huang, X.: Effect of weld nugget size on failure mode and mechanical properties of microscale resistance spot welds on Ti–1Al–1Mn ultrathin foils. Adv. Mech. Eng. 10(7), 1687814018785283 (2018)Google Scholar
  18. 18.
    Aslanlar, S., Ogur, A., Ozsarac, U., Ilhan, E., Demir, Z.: Effect of welding current on mechanical properties of galvanized chromided steel sheets in electrical resistance spot welding. Mater. Des. 28(1), 2–7 (2007)CrossRefGoogle Scholar
  19. 19.
    Hayat, F.: The effects of the welding current on heat input, nugget geometry, and the mechanical and fractural properties of resistance spot welding on Mg/Al dissimilar materials. Mater. Des. 32(4), 2476–2484 (2011)CrossRefGoogle Scholar
  20. 20.
    Hajitabar, A., Naffakh-Moosavy, H.: Effect of electron beam welding current variations on the microstructure and mechanical properties of Nb-1Zr advanced alloy. Vacuum 150, 196–202 (2018)CrossRefGoogle Scholar
  21. 21.
    Akkaş, N., Onar, V., Teke, Ç., İlhan, E., Aslanlar, S.: Welding time effect on nugget sizes in resistance spot welding of SPA-C steel sheets used in railway vehicles. Acta Phys. Pol. A 134(1), 235–237 (2018)CrossRefGoogle Scholar
  22. 22.
    Dickinson, D., Franklin, J., Stanya, A.: Characterization of spot welding behavior by dynamic electrical parameter monitoring. Weld. J. 59(6), 170 (1980)Google Scholar
  23. 23.
    Pouranvari, M., Asgari, H., Mosavizadch, S., Marashi, P., Goodarzi, M.: Effect of weld nugget size on overload failure mode of resistance spot welds. Sci. Technol. Weld. Join. 12(3), 217–225 (2007)CrossRefGoogle Scholar
  24. 24.
    Eisazadeh, H., Hamedi, M., Halvaee, A.: New parametric study of nugget size in resistance spot welding process using finite element method. Mater. Des. 31(1), 149–157 (2010)CrossRefGoogle Scholar
  25. 25.
    Liu, S., Mi, G., Yan, F., Wang, C., Jiang, P.: Correlation of high power laser welding parameters with real weld geometry and microstructure. Opt. Laser Technol. 94, 59–67 (2017)CrossRefGoogle Scholar
  26. 26.
    Li, Y., Zhao, Y., Li, Q., Wu, A., Zhu, R., Wang, G.: Effects of welding condition on weld shape and distortion in electron beam welded Ti2AlNb alloy joints. Mater. Des. 114, 226–233 (2017)CrossRefGoogle Scholar
  27. 27.
    Zhou, L., Min, J., He, W., Huang, Y., Song, X.: Effect of welding time on microstructure and mechanical properties of Al-Ti ultrasonic spot welds. J. Manuf. Process. 33, 64–73 (2018)CrossRefGoogle Scholar
  28. 28.
    Tsai, C., Papritan, J., Dickinson, D., Jammal, O.: Modeling of resistance spot weld nugget growth. Weld. J. (USA) 71(2), 47 (1992)Google Scholar
  29. 29.
    Hou, Z., Kim, I.-S., Wang, Y., Li, C., Chen, C.: Finite element analysis for the mechanical features of resistance spot welding process. J. Mater. Process. Technol. 185(1), 160–165 (2007)CrossRefGoogle Scholar
  30. 30.
    Zhang, J., Dong, P., Brust, F.W., Shack, W.J., Mayfield, M.E., McNeil, M.: Modeling of weld residual stresses in core shroud structures. Nucl. Eng. Des. 195(2), 171–187 (2000)CrossRefGoogle Scholar
  31. 31.
    Al-Samhan, A., Darwish, S.: Strength prediction of weld-bonded joints. Int. J. Adhes. Adhes. 23(1), 23–28 (2003)CrossRefGoogle Scholar
  32. 32.
    Lindgren, L.-E.: Finite element modeling and simulation of welding part 1: increased complexity. J. Therm. Stresses 24(2), 141–192 (2001)CrossRefGoogle Scholar
  33. 33.
    Pashazadeh, H., Gheisari, Y., Hamedi, M.: Statistical modeling and optimization of resistance spot welding process parameters using neural networks and multi-objective genetic algorithm. J. Intell. Manuf. 27(3), 549–559 (2016)CrossRefGoogle Scholar
  34. 34.
    Zhao, D., Wang, Y., Zhang, P., Liang, D.: Modeling and experimental research on resistance spot welded joints for dual-phase steel. Materials 12(7), 1108 (2019)CrossRefGoogle Scholar
  35. 35.
    Salvini, P., Vivio, F., Vullo, V.: A spot weld finite element for structural modelling. Int. J. Fatigue 22(8), 645–656 (2000)CrossRefGoogle Scholar
  36. 36.
    Xie, X-f, Jiang, W., Luo, Y., Xu, S., Gong, J.-M., Tu, S.-T.: A model to predict the relaxation of weld residual stress by cyclic load: experimental and finite element modeling. Int. J. Fatigue 95, 293–301 (2017)CrossRefGoogle Scholar
  37. 37.
    Baek, E., Yim, H.: Numerical modeling and simulation for ultrasonic inspection of anisotropic austenitic welds using the mass-spring lattice model. NDT E Int. 44(7), 571–582 (2011)CrossRefGoogle Scholar
  38. 38.
    Pang, S., Chen, W., Zhou, J., Liao, D.: Self-consistent modeling of keyhole and weld pool dynamics in tandem dual beam laser welding of aluminum alloy. J. Mater. Process. Technol. 217, 131–143 (2015)CrossRefGoogle Scholar
  39. 39.
    Mirzaei, F., Ghorbani, H., Kolahan, F.: Numerical modeling and optimization of joint strength in resistance spot welding of galvanized steel sheets. Int. J. Adv. Manuf. Technol. 92(9–12), 3489–3501 (2017)CrossRefGoogle Scholar
  40. 40.
    Basava, S., Hess, D.: Bolted joint clamping force variation due to axial vibration. J. Sound Vib. 210(2), 255–265 (1998)CrossRefGoogle Scholar
  41. 41.
    Paveebunvipak, K., Uthaisangsuk, V.: Microstructure based modeling of deformation and failure of spot-welded advanced high strength steels sheets. Mater. Des. 160, 731–751 (2018)CrossRefGoogle Scholar
  42. 42.
    Tailor, M.K.J., Mishra, M.V., Purohit, M.G., Jaiswal, M.C., Vyas, M.N., Tailor, M.K.J., Mishra, M.V., Purohit, M.G., Jaiswal, M.C., Vyas, M.N.: A review paper on effects of vibration on mechanical properties and defect of similar and dissimilar weld joints in TIG welding. Int. J. 4, 170–174 (2017)Google Scholar
  43. 43.
    Cook, R.D., Malkus, D.S., Plesha, M.E., Witt, R.J.: Concepts and applications of finite element analysis, vol. 4. Wiley, New York (1974)Google Scholar
  44. 44.
    Lee, U.: Spectral Element Method in Structural Dynamics. Wiley, New York (2009)CrossRefGoogle Scholar
  45. 45.
    Park, J.: Transfer function methods to measure dynamic mechanical properties of complex structures. J. Sound Vib. 288(1), 57–79 (2005)CrossRefGoogle Scholar
  46. 46.
    Kwak, Y., Park, S., Park, J.: Dynamic properties of bolted joints in laminated composites evaluated using flexural wave propagation. Mech. Res. Commun. 95, 37–42 (2018)CrossRefGoogle Scholar
  47. 47.
    Inman, D.J.: Engineering Vibration, vol. 3. Prentice Hall, New Jersey (2008)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Sang Mok Park
    • 1
  • Yunsang Kwak
    • 1
  • Jongho Lee
    • 1
  • Junhong Park
    • 1
    Email author
  1. 1.Department of Mechanical EngineeringHanyang UniversitySeoulRepublic of Korea

Personalised recommendations