Visualization of the Rolling Contact Fatigue Cracks in Rail Tracks with a Magnetooptical Sensor

  • A. Chotzoglou
  • M. PissasEmail author
  • A. D. Zervaki
  • G. N. Haidemenopoulos
  • T. Pissas


The rolling contact fatigue cracks (RCF), produced at the surface of the rail tracks, can be detected using a magnetooptical (MO) sensor. Rail tracks are carbon steels with pearlite microstructure. This microstructure has a lamellar texture composed of alternating layers of ferrite and cementite. Both phases are soft ferromagnetic materials at room temperature. If an external magnetic field is applied on the surface of a rail track, the reduced magnetic permeability causes a magnetic leakage field above the cracks. When the external magnetic field is removed, in most cases, a residual stray magnetic field remains above the cracks. When a MO sensor is placed on the surface of the rail track, the sudden change of the stray remanent magnetic field near a crack, yields a significant rotation of the polarization plane of the reflected light, resulting in high MO contrast, exactly above the cracks. Using a polished surface and a cross-section from the head of the rail track, we succeeded in visualizing the RCF cracks in the laboratory. The RCF cracks can also be detected on the surface of the rail track, in field measurements, using a portable commercial polarized light microscope equipped with a MO sensor. Finally, we use computer vision methods, to automatically detect the RCF cracks, using video recorded by displacing the portable microscopy with the MO sensor, on the surface of the rail tracks. We tested an unsupervised automatic crack detection algorithm, which exploits the tubular contrast of the RCF cracks to pinpoint the pixels that correspond to them.


Rail tracks Rail head check Rolling contact fatigue Magnetooptic sensor Computer vision 



The present work has been partially supported by: (a) the project MIS 5002567, implemented under the “Action for the Strategic Development on the Research and Technological Sector”, and (b) the project MIS 5002772, “National Infrastructure in Nanotechnology, Advanced Materials and Micro-/ Nanoelectronics” which is implemented under the Action “Reinforcement of the Research and Innovation Infrastructure”. Both projects are funded by the Operational Programme “Competitiveness, Entrepreneurship and Innovation” (NSRF 2014-2020) and co-financed by Greece and the European Union (European Regional Development Fund).


  1. 1.
    Doherty, A., Clark, S., Care, R., Dembosky, M.: Why rails crack?, Ingenia, Issue 23, (June 2005)Google Scholar
  2. 2.
    Bower, A.F., Johnson, K.L.: Plastic flow and shakedown of the rail surface in repeated wheel-rail contact. Wear 144, 1 (1991). CrossRefGoogle Scholar
  3. 3.
    Lewis, R., Olofsson, U. (eds.): Wheel-Rail Interface Handbook. CRC Press, Boca Raton (2009)Google Scholar
  4. 4.
    Orringer, O., Tang, Y.H., Gordon, J.E., Jeong, D.Y., Morris, J.M., Perlman, A.B.: Crack Propagation Life of Detail Fractures in Rails. USA Department of Transportation, Federal Railroad Administration, (DOT/FRA/ORD-88/13, (1988)Google Scholar
  5. 5.
    Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985)CrossRefGoogle Scholar
  6. 6.
    Dey, A., Kurz, J., Tenczynski, L.: Detection and evaluation of rail defects with non-destructive testing methods. In: 19th World Conference on Non-Destructive Testing (WCNDT 2016), 13–17 June 2016 in Munich, GermanyGoogle Scholar
  7. 7.
    Bynon, J.H., Garnham, J.E., Sawley, K.J.: Rolling contact fatigue of three pearlite rail steels. Wear 192, 94 (1996). CrossRefGoogle Scholar
  8. 8.
    Bogdański, S., Lewicki, P.: 3D model of liquid entrapment mechanism for rolling contact fatigue cracks in rails. Wear 265, 1356 (2008). CrossRefGoogle Scholar
  9. 9.
    Franklin, F.J., Widiyarta, I., Kapoor, A.: Computer simulation of wear and rolling contact fatigue. Wear 251, 949 (2001). CrossRefGoogle Scholar
  10. 10.
    Franklin, F.J., Garnhamb, J.E., Fletchera, D.I., Davis, C.L., Kapoor, A.: Modelling rail steel microstructure and its effect on crack initiation. Wear 265, 1332 (2008). CrossRefGoogle Scholar
  11. 11.
    Cannon, D.F., Edel, K.O., Grassie, S.L., Sawley, K.: Rail defects. An overview. Fatigue Fract. Eng. Mater. Struct. 26, 865 (2003)CrossRefGoogle Scholar
  12. 12.
    Ringsberg, J.W., Bergkviss, A.: On propagation of short rolling contact fatigue cracks. Fatigue Fract. Engng. Mater. Struct. 26, 969 (2003)CrossRefGoogle Scholar
  13. 13.
    Schilke, M., Larijani, N., Persson, C.: Interaction between cracks and microstructure in three dimensions for rolling contact fatigue in railway rails. Fatigue Fract. Eng. Mater. Struct. 37, 280 (2014). CrossRefGoogle Scholar
  14. 14.
    Sugino, K., Kageyama, H., Urashima, C., Kikuchi, A.: Metallurgical improvement of rail for the reduction of rail-wheel contact fatigue failures. Wear 144, 319 (1991)CrossRefGoogle Scholar
  15. 15.
    MacMaster, E.: Nondestructive Testing Handbook, vol. 2. The Ronald Press Company, New York (1959)Google Scholar
  16. 16.
    EN-ISO 9934-1:2016, Non Destructive testing: magnetic particle testing—part 1: general principlesGoogle Scholar
  17. 17.
    EN-ISO 15549:2019, Eddy current testing-General PrinciplesGoogle Scholar
  18. 18.
    Oota, A., Ito, T., Kawano, K., Sugiyama, D., Aoki, H.: Magnetic detection of cracks by fatigue in mild steels using a scanning Hall-sensor microscope. Rev. Sci. Instrum. 70, 184 (1999). CrossRefGoogle Scholar
  19. 19.
    Kloster, A., Kröning, M., Smorodinsky, J., Ustinov, V.: Linear magnetic stray flux array based on GMR gradiometers. In: Indian Society for Non-Destructive Testing (NDE 2002), (
  20. 20.
    Kreutzbruck, M., Allweins, K., Strackbein, C., Bernau, H.: Inverse algorithm for electromagnetic wire inspection based on GMR-sensor arrays. Int. J. Appl. Electromagn. Mech. 30, 299 (2009). CrossRefGoogle Scholar
  21. 21.
    Reimund, V., Blome, M., Pelkner, M., Kreutzbruck, M.: Fast defect parameter estimation based on magnetic flux leakage measurements with GMR sensors. Int. J. Appl. Electromagn. Mech. 37, 199 (2011). CrossRefGoogle Scholar
  22. 22.
    Pelkner, M., Neubauer, A., Reimund, V., Kreutzbruck, M., Schutze, A.: Routes for GMR-sensor design in non-destructive testing. Sensors 12, 12169 (2012). CrossRefGoogle Scholar
  23. 23.
    Reig, C., de Freitas, C.S., Mukhopadhyay, S.C.: Giant Magnetoresistance (GMR) Sensors. From Basis to State-of-the-Art Applications. Springer-Verlag, Berlin (2013)CrossRefGoogle Scholar
  24. 24.
    Manios, E., Pissas, M.: A new cracks detection device for magnetic steels. EPJ Web Conf. 75, 06013 (2014). CrossRefGoogle Scholar
  25. 25.
    Thomas, H.M., Dey, A., Heyder, R.: Eddy current test method for early detection of rolling contact fatigue (RCF) in rails. Insight Non-Destr. Test Cond. Monit. 52(7), 361–365 (2010). CrossRefGoogle Scholar
  26. 26.
    Dey, A., Hintze, H., Reinhardt, J.: Operation of railway maintenance machines with integrated Eddy current technique—an overview of the new requirements in Germany. In: 11th European Conference on Non-destructive Testing (ECNDT 2014), Czech Republic, Prague, 6–10 October 2014Google Scholar
  27. 27.
    Shen, J., Zhou, L., Warnett, J., Williams, M., Rowshandel, H., Nicholson, G., Davis, C.: The influence of RCF crack propagation angle and crack shape on the ACFM signal. In: 19th World Conference on Non-Destructive Testing (WCNDT 2016), 13–17 June 2016 in Munich, GermanyGoogle Scholar
  28. 28.
    Popović, Z., Radović, V., Lazarević, L., Vukadinović, V., Tepić, G.: Rail inspection of RCF defects. Metalurgija 52, 537 (2013)Google Scholar
  29. 29.
    Popović, Zdenka, Lazarević, Luka, Brajović, Ljiljana, Vilotijević, Milica: The importance of rail inspections in the urban area—aspect of head checking rail defects. Proced. Eng. 117, 596 (2015). CrossRefGoogle Scholar
  30. 30.
    RIL 821.2007Z61: “Prüftechnische Anerkennung (prüftechnische Eignung) der Wirbelstromprüftechnik von Schienenprüfzügen” (Process of a technical inspection and approval for eddy current testing systems on rail inspection trains), Directive of Deutsche Bahn AG (2012)Google Scholar
  31. 31.
    RIL 821.2007Z65: Prüftechnische Anerkennung der Wirbelstromprüftechnik auf Schienenbearbeitungsmaschinen (Process of a technical inspection and approval for eddy current testing systems on rail maintenance machines), Directive of Deutsche Bahn AG (2012)Google Scholar
  32. 32.
    Papaelias, MPh, Roberts, C., Davis, C.L.: A review on non-destructive evaluation of rails: state-of-the-art and future development. Proc. Inst. Mech. Eng. Part F 222, 367 (2008). CrossRefGoogle Scholar
  33. 33.
    Naeimi, M., Li, Z., Qian, Z., Zhou, Y., Wuc, J., Petrov, R.H., Sietsma, J., Dollevoet, R.: Reconstruction of the rolling contact fatigue cracks in rails using X-ray computed tomography. NDT E Int. 92, 199 (2017). CrossRefGoogle Scholar
  34. 34.
    Koschny, M., Lindner, M.: Advanced materials and processes, magneto-optical sensors accurately analyze magnetic field distribution of magnetic materials issue February (2012), p. 13. (
  35. 35.
    Haidemenopoulos, G.N., Sarafoglou, P.I., Christopoulos, P., Zervaki, A.D.: Rolling contact fatigue cracking in rails subjected to in-service loading. Fatigue Fract. Eng. Mater. Struct. 39, 1161 (2016). CrossRefGoogle Scholar
  36. 36.
    Haidemenopoulos, G.N., Zervaki, A.D., Terezakis, O., Tzanis, J., Gianakopoulos, A.E., Kotouzas, M.K.: Investigation of rolling contact fatigue cracks in a grade 900A rail steel of a metro track. Fatigue Fract. Eng. Mater. Struct. 29, 887 (2006). CrossRefGoogle Scholar
  37. 37.
    Alwahdi, F.: Fletcher, DI: the metallurgy of pearlitic rail steel following service in the UK. AIP Conf. Proc. 1653, 020012 (2015). CrossRefGoogle Scholar
  38. 38.
    Franklina, F.J., Gahlotb, A., Fletcherc, D.I., Garnhamd, J.E., Davisd, C.: Three-dimensional modelling of rail steel microstructure and crack growth. Wear 271, 357 (2011). CrossRefGoogle Scholar
  39. 39.
    Christodoulou, P.I., Kermanidis, A.T., Haidemenopoulos, G.N.: Fatigue and fracture behavior of pearlitic Grade 900A steel used in railway applications. Theor. Appl. Fract. Mech. 83, 51 (2016). CrossRefGoogle Scholar
  40. 40.
    Hubert, Alex, Schäfer, Rudolf, et al.: Magnetic Domains: The Analysis of Magnetic Microstructures. Springer, Berlin (2009)Google Scholar
  41. 41.
    Landau, D.L., Lifshitz, E.M.: Electrodynamics of Continuous. Media Pergamon Press, New York (1984)Google Scholar
  42. 42.
    Dionne, Gerald F.: Magnetic Oxides. Springer, New York (2009)CrossRefGoogle Scholar
  43. 43.
    Wettling, W.: Magneto-optics of ferrites. J. Magn. Magn. Mater. 3, 147 (1976). CrossRefGoogle Scholar
  44. 44.
    Gonzalez, G., Turetken, E., Fleuret, F., Fua, P.: Delineating Trees in Noisy 2D Images and 3D Image-Stacks, in CVPR., San Francisco CA (2010)Google Scholar
  45. 45.
    Law, M., Chung, A.: Three dimensional curvilinear structure detection using optimally oriented flux. In: ECCV, pp 368–382 (2008)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. Chotzoglou
    • 1
  • M. Pissas
    • 1
    Email author
  • A. D. Zervaki
    • 2
  • G. N. Haidemenopoulos
    • 2
    • 3
  • T. Pissas
    • 4
  1. 1.Institute of Nanoscience and Nanotechnology (INN)AthensGreece
  2. 2.School of Engineering, Department of Mechanical EngineeringUniversity of ThessalyVolosGreece
  3. 3.Department of Mechanical EngineeringKhalifa University of Science and TechnologyAbu DhabiUnited Arab Emirates
  4. 4.Wellcome/EPSRC Center for Interventional and Surgical SciencesUniversity College LondonGreater LondonUK

Personalised recommendations