Nondestructive Evaluation of Clad Rods by Inversion of Acoustic Scattering Data

  • Parvin Fathi-Haftshejani
  • Farhang HonarvarEmail author


In many engineering applications, it is important to know various characteristics of the materials including their elastic properties. For clad rods, especially those with small radii, such as fibres used in fibre-reinforced composites, it is extremely difficult to prepare test samples from the core and cladding materials. In this paper, we develop a novel nondestructive testing technique for measuring the elastic constants of both the core and cladding materials as well as the cladding thickness by solving an inverse problem. The clad rod is insonified by an acoustic wave in water and the scattered field from the sample is recorded. By using a theoretical model for the scattering process, an inverse problem is formed. The unknowns of this problem are the wave velocities of the core and cladding materials and the cladding thickness. This problem is then solved by using a genetic algorithm to find the unknown parameters. A perturbation study is also conducted to show the sensitivity of the resonance frequencies of the clad rod to changes in cladding thickness. The proposed approach shows very good convergence and the measured values agree very well with tabulated data. The proposed technique could be considered as a powerful nondestructive evaluation tool for characterizing clad rods.


Elastic constants Clad rod Scattering Genetic algorithm Inverse problem 



  1. 1.
    Flax, L., Dragonette, L., Überall, H.: Theory of elastic resonance excitation by sound scattering. J. Acoust. Soc. Am. 63(3), 723–731 (1978)CrossRefGoogle Scholar
  2. 2.
    Honarvar, F., Sinclair, A.: Scattering of an obliquely incident plane wave from a circular clad rod. J. Acoust. Soc. Am. 102(1), 41–48 (1997)CrossRefGoogle Scholar
  3. 3.
    Li, T.B., Ueda, M.: Sound scattering of a plane wave obliquely incident on a cylinder. J. Acoust. Soc. Am. 86(6), 2363–2368 (1989)CrossRefGoogle Scholar
  4. 4.
    Batard, H., Quentin, G.: Acoustical resonances of solid elastic cylinders: parametric study and introduction to the inverse problem. J. Acoust. Soc. Am. 91(2), 581–590 (1992)CrossRefGoogle Scholar
  5. 5.
    Hasheminejad, S., Safari, N.: Acoustic scattering from viscoelastically coated spheres and cylinders in viscous fluids. J. Sound Vib. 280(1), 101–125 (2005)CrossRefGoogle Scholar
  6. 6.
    Larin, N., Skobel’tsyn, S., Tolokonnikov, L.: Modelling the inhomogeneous coating of an elastic plate with optimum sound-reflecting properties. J. Appl. Math. Mech. 80(4), 339–344 (2016)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Larin, N., Tolokonnikov, L.: The scattering of a plane sound wave by an elastic cylinder with a discrete-layered covering. J. Appl. Math. Mech. 79(2), 164–169 (2015)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Flax, L., Varadan, V., Varadan, V.: Scattering of an obliquely incident acoustic wave by an infinite cylinder. J. Acoust. Soc. Am. 68(6), 1832–1835 (1980)CrossRefGoogle Scholar
  9. 9.
    Flax, L., Überall, H.: Resonant scattering of elastic waves from spherical solid inclusions. J. Acoust. Soc. Am. 67(5), 1432–1442 (1980)CrossRefGoogle Scholar
  10. 10.
    Veksler, N.D.: Resonance Acoustic Spectroscopy. Springer, New York (2012)Google Scholar
  11. 11.
    Rhee, H., Park, Y.: Novel acoustic wave resonance scattering formalism. J. Acoust. Soc. Am. 102(6), 3401–3412 (1997)CrossRefGoogle Scholar
  12. 12.
    Überall, H., Dragonette, L., Flax, L.: Relation between creeping waves and normal modes of vibration of a curved body. J. Acoust. Soc. Am. 61(3), 711–715 (1977)CrossRefGoogle Scholar
  13. 13.
    Gaunaurd, G., Tanglis, E., Überall, H.: Surface wave interpretation of the eigenfrequencies of a finite-length fluid cylinder. J. Acoust. Soc. Am. 67(3), 764–769 (1980)CrossRefGoogle Scholar
  14. 14.
    Maze, G., Izbicki, J.L., Ripoche, J.: Resonances of plates and cylinders: guided waves. J. Acoust. Soc. Am. 77(4), 1352–1357 (1985)CrossRefGoogle Scholar
  15. 15.
    Izbicki, J., Maze, G., Ripoche, J.: Influence of the free modes of vibration on the acoustic scattering of a circular cylindrical shell. J. Acoust. Soc. Am. 80(4), 1215–1219 (1986)CrossRefGoogle Scholar
  16. 16.
    Bao, X.L., Cao, H., Überall, H.: Resonances and surface waves in the scattering of an obliquely incident acoustic field by an infinite elastic cylinder. J. Acoust. Soc. Am. 87(1), 106–110 (1990)CrossRefGoogle Scholar
  17. 17.
    Conoir, J., Rembert, P., Lenoir, O., Izbicki, J.: Relation between surface helical waves and elastic cylinder resonances. J. Acoust. Soc. Am. 93(3), 1300–1307 (1993)CrossRefGoogle Scholar
  18. 18.
    Dragonette, L.R., Numrich, S., Frank, L.J.: Calibration technique for acoustic scattering measurements. J. Acoust. Soc. Am. 69(4), 1186–1189 (1981)CrossRefGoogle Scholar
  19. 19.
    de Billy, M., Adler, L., Quentin, G.: Parameters affecting backscattered ultrasonic leaky-Rayleigh waves from liquid–solid interfaces. J. Acoust. Soc. Am. 72(3), 1018–1020 (1982)CrossRefGoogle Scholar
  20. 20.
    Ripoche, J., Maze, G., Izbicki, J.-L.: A new acoustic spectroscopy: resonance spectroscopy by the MIIR. J. Nondestr. Eval. 5(2), 69–79 (1985)CrossRefGoogle Scholar
  21. 21.
    De Billy, M.: Determination of the resonance spectrum of elastic bodies via the use of short pulses and Fourier transform theory. J. Acoust. Soc. Am. 79(2), 219–221 (1986)CrossRefGoogle Scholar
  22. 22.
    Maze, G.: Acoustic scattering from submerged cylinders. MIIR Im/Re: experimental and theoretical study. J. Acoust. Soc. Am. 89(6), 2559–2566 (1991)CrossRefGoogle Scholar
  23. 23.
    Sodagar, S., Honarvar, F., Yaghootian, A., Sinclair, A.N.: An alternative approach for measuring the scattered acoustic pressure field of immersed single and multiple cylinders. Acoust. Phys. 57(3), 411–419 (2011)CrossRefGoogle Scholar
  24. 24.
    Quentin, G., Luppé, F., Cand, A.: Inverse problem and scattering from elastic cylinders at high frequencies. J. Acoust. Soc. Am. 84(S1), S186–S186 (1988)CrossRefGoogle Scholar
  25. 25.
    Honarvar, F., Sinclair, A.: Nondestructive evaluation of cylindrical components by resonance acoustic spectroscopy. Ultrasonics 36(8), 845–854 (1998)CrossRefGoogle Scholar
  26. 26.
    Batard, H., Quentin, G., Conoir, J., Rousselot, J.: Acoustical resonances of an elastic cylinder: parametrical study. J. Acoust. Soc. Am. 87(S1), S42–S42 (1990)CrossRefGoogle Scholar
  27. 27.
    Kari, M., Honarvar, F.: Characterization of a cylindrical rod by inversion of acoustic scattering data. Ultrasonics 54(6), 1559–1567 (2014)CrossRefGoogle Scholar
  28. 28.
    Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables. Courier Corporation, North Chelmsford (1964)zbMATHGoogle Scholar
  29. 29.
    Pilkey, W.D.: Formulas for Stress, Strain, and Structural Matrices, 2nd edn, p. 2005. Wiley, New York (2005)Google Scholar
  30. 30.
    Gaunaurd, G.C.: Elastic and acoustic resonance wave scattering. Appl. Mech. Rev. 42(6), 143–192 (1989)CrossRefGoogle Scholar
  31. 31.
    Brill, D., Gaunaurd, G., Überall, H.: Acoustic spectroscopy. J. Acoust. Soc. Am. 72(3), 1067–1069 (1982)CrossRefGoogle Scholar
  32. 32.
    Mitchell, M.: An Introduction to Genetic Algorithms. MIT press, Cambridge (1998)zbMATHGoogle Scholar
  33. 33.
    Reeves, C.: Genetic algorithms. Handbook of Metaheuristics, pp. 55–82. Springer, New York (2003)Google Scholar
  34. 34.
    Sinclair, A., Addison Jr., R.: Acoustic diffraction spectrum of a SiC fiber in a solid elastic medium. J. Acoust. Soc. Am. 94(2), 1126–1135 (1993)CrossRefGoogle Scholar
  35. 35.
    Fan, Y., Sinclair, A., Honarvar, F.: Scattering of a plane acoustic wave from a transversely isotropic cylinder encased in a solid elastic medium. J. Acoust. Soc. Am. 106(3), 1229–1236 (1999)CrossRefGoogle Scholar
  36. 36.
    Kari, M., Honarvar, F.: Nondestructive characterization of materials by inversion of acoustic scattering data. Inverse Probl. Sci. Eng. 22(5), 814–831 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.NDE Lab, Faculty of Mechanical EngineeringK. N. Toosi University of TechnologyTehranIran

Personalised recommendations