Metal Magnetic Memory Inspection of Q345 Steel Specimens with Butt Weld in Tensile and Bending Test

  • Sanqing Su
  • Xuran Zhao
  • Wei WangEmail author
  • Xiaohui Zhang


Metal magnetic memory (MMM) method is a non-destructive testing method based on the analysis of self-magnetic-leakage field (SMLF) distribution on components’ surfaces. The MMM method can determine stress concentration zones, imperfections, and heterogeneity in the microstructure of the material and in welded joints. In order to study the magnetization of defective and non-defective butt welded Q345 steel specimens under tensile and bending loads, the normal component of the SMLF (Hp(y)) field values were measured. The results demonstrate that Hp(y) field values and gradients are effective in capturing different stress states under tensile and bending loads. The distribution of Hp(y) field values for flexural tests are quite different from that of tensile tests. The gradient values can be used to determine the degree of stress concentration. In addition, three characteristic parameters were calculated. All three parameters can predict failures with early warnings. Specifically, whether the specimen is in tensile stress state or in compressive stress state can be distinguished by the average value of Hp(y) field area. The quality of the butt weld can be judged by the magnetic index (m). The judging criteria can be a significant complement to the inspection of welded joints using MMM method. Further research could help to validate the judging criteria and analyse the factors affecting the accuracy of the predictions.


Metal magnetic memory Self-magnetic-leakage field Non-destructive test Stress concentration Butt weld 



This work was supported by the National Natural Science Foundation of China [grant numbers 51878548, 51578449] and the Key Project of Natural Science Basic Research Plan of Shaanxi Province [2018JZ5013].


  1. 1.
    Dubov, A.A.: A study of metal properties using the method of magnetic memory. Met. Sci. Heat Treat. 39(9), 401–405 (1997). CrossRefGoogle Scholar
  2. 2.
    Dubov, A.A.: Screening of weld quality using the magnetic metal memory effect. Weld World 41(3), 196–199 (1998)Google Scholar
  3. 3.
    Dubov, A.A.: Diagnostics of metal items and equipment by means of metal magnetic memory. In: NDT’99 and UK Corrosion’99, pp. 287–293 (1999)Google Scholar
  4. 4.
    BS ISO 24497-3:2007: Non-destructive testing—metal magnetic memory—part 3: inspection of welded joints. Document No. ISO 24497-3:2007 (2007)Google Scholar
  5. 5.
    Dubov, A.A.: Principle features of metal magnetic memory method and inspection tools as compared to known magnetic NDT methods. CINDE J. 27(3), 16 (2006)Google Scholar
  6. 6.
    Wang, Z.D., Gu, Y., Wang, Y.S.: A review of three magnetic NDT technologies. J. Magn. Magn. Mater. 324(4), 382–388 (2012). CrossRefGoogle Scholar
  7. 7.
    Bao, S., Fu, M., Hu, S., Gu, Y., Lou, H.: A review of the metal magnetic memory technique. In: ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering (2016)Google Scholar
  8. 8.
    Shi, P., Zhang, P., Jin, K., Chen, Z., Zheng, X.: Thermo-magneto-elastoplastic coupling model of metal magnetic memory testing method for ferromagnetic materials. J. Appl. Phys. 123(14), 145102 (2018). CrossRefGoogle Scholar
  9. 9.
    Jiles, D.C.: Theory of the magnetomechanical effect. J. Phys. D Appl. Phys. 28(8), 1537–1546 (1995). CrossRefGoogle Scholar
  10. 10.
    Jiles, D.C., Li, L.: A new approach to modeling the magnetomechanical effect. J. Appl. Phys. 95(11), 7058–7060 (2004). CrossRefGoogle Scholar
  11. 11.
    Wang, Z.D., Yao, K., Deng, B., Ding, K.Q.: Quantitative study of metal magnetic memory signal versus local stress concentration. NDT & Int. 43(6), 513–518 (2010). CrossRefGoogle Scholar
  12. 12.
    Wang, Z.D., Deng, B., Yao, K.: Physical model of plastic deformation on magnetization in ferromagnetic materials. J. Appl. Phys. 109(8), 083928 (2011). CrossRefGoogle Scholar
  13. 13.
    Ren, S., Ren, X.: Studies on laws of stress-magnetization based on magnetic memory testing technique. J. Magn. Magn. Mater. 449, 165–171 (2018). CrossRefGoogle Scholar
  14. 14.
    Bao, S., Lou, H., Gong, S.: Magnetic field variation of a low-carbon steel under tensile stress. Insight 56(5), 252–263 (2014). CrossRefGoogle Scholar
  15. 15.
    Li, Y., Zeng, X., Wei, L., Wan, Q.: Characterizations of damage-induced magnetization for X80 pipeline steel by metal magnetic memory testing. Int. J. Appl. Electromagnet Mech 54(1), 23–35 (2017). CrossRefGoogle Scholar
  16. 16.
    Guo, P., Chen, X., Guan, W., Cheng, H., Jiang, H.: Effect of tensile stress on the variation of magnetic field of low-alloy steel. J. Magn. Magn. Mater. 323(20), 2474–2477 (2011). CrossRefGoogle Scholar
  17. 17.
    Roskosz, M., Bieniek, M.: Evaluation of residual stress in ferromagnetic steels based on residual magnetic field measurements. NDT&E Int. 45(1), 55–62 (2012). CrossRefzbMATHGoogle Scholar
  18. 18.
    Li, X.M., Ding, H.S., Bai, S.W.: Research on the stress-magnetism effect of ferromagnetic materials based on three-dimensional magnetic flux leakage testing. NDT&E Int. 62(2), 50–54 (2014). CrossRefGoogle Scholar
  19. 19.
    Leng, J., Liu, Y., Zhou, G., Gao, Y.: Metal magnetic memory signal response to plastic deformation of low carbon steel. NDT&E Int. 55(3), 42–46 (2013). CrossRefGoogle Scholar
  20. 20.
    Huang, H., Yang, C., Qian, Z., Han, G., Liu, Z.: Magnetic memory signals variation induced by applied magnetic field and static tensile stress in ferromagnetic steel. J. Magn. Magn. Mater. 416, 213–219 (2016). CrossRefGoogle Scholar
  21. 21.
    Leng, J., Xu, M., Zhou, G., Wu, Z.: Effect of initial remanent states on the variation of magnetic memory signals. NDT&E Int. 52, 23–27 (2012). CrossRefGoogle Scholar
  22. 22.
    Roskosz, M.: Metal magnetic memory testing of welded joints of ferritic and austenitic steels. NDT&E Int. 44(3), 305–310 (2011). CrossRefGoogle Scholar
  23. 23.
    Shui, G., Li, C., Yao, K.: Non-destructive evaluation of the damage of ferromagnetic steel using metal magnetic memory and nonlinear ultrasonic method. Int. J. Appl. Electromagnet Mech 47(4), 1023–1038 (2015). CrossRefGoogle Scholar
  24. 24.
    Yao, K., Wang, Z.D., Deng, B., Shen, K.: Experimental research on metal magnetic memory method. Exp. Mech. 52(3), 305–314 (2012). CrossRefGoogle Scholar
  25. 25.
    Huang, H., Han, G., Qian, Z., Liu, Z.: Characterizing the magnetic memory signals on the surface of plasma transferred arc cladding coating under fatigue loads. J. Magn. Magn. Mater. 443, 281–286 (2017). CrossRefGoogle Scholar
  26. 26.
    Xu, K., Qiu, X., Tian, X.: Investigation of metal magnetic memory signals of welding cracks. J. Nondestr. Eval. 36(2), 20 (2017). CrossRefGoogle Scholar
  27. 27.
    Kolokolnikov, S.M., Dubov, A.A., Marchenkov, A.Y.: Determination of mechanical properties of metal of welded joints by strength parameters in the stress concentration zones detected by the metal magnetic memory method. Weld World 58(5), 699–706 (2014). CrossRefGoogle Scholar
  28. 28.
    Huang, H., Qian, Z., Yang, C., Han, G., Liu, Z.: Magnetic memory signals of ferromagnetic weldment induced by dynamic bending load. Nondestr. Test. Eval. 32(2), 166–184 (2017). CrossRefGoogle Scholar
  29. 29.
    Dong, L., Xu, B., Dong, S., Song, L., Chen, Q., Wang, D.: Stress dependence of the spontaneous stray field signals of ferromagnetic steel. NDT&E Int. 42(4), 323–327 (2009). CrossRefGoogle Scholar
  30. 30.
    Hornreich, R., Rubinstein, H., Spain, R.: Magnetostrictive phenomena in metallic materials and some of their device applications. IEEE Trans. Magn. 7(1), 29–48 (1971). CrossRefGoogle Scholar
  31. 31.
    Gatelier-Rothea, C., Chicois, J., Fougeres, R., Fleischmann, P.: Characterization of pure iron and (130 p.p.m.) carbon–iron binary alloy by Barkhausen noise measurements: study of the influence of stress and microstructure. Acta Mater. 46(14), 4873–4882 (1998). CrossRefGoogle Scholar
  32. 32.
    Jiang, S.T., Li, W.: Condensed Matter Magnetic Physics, 1st edn. Science Publishing Company, Beijing (2003)Google Scholar
  33. 33.
    Stefanita, C.G., Atherton, D.L., Clapham, L.: Plastic versus elastic deformation effects on magnetic Barkhausen noise in steel. Acta Mater. 48(13), 3545–3551 (2000). CrossRefGoogle Scholar
  34. 34.
    Hwang, D.G., Kim, H.C.: The influence of plastic deformation on Barkhausen effects and magnetic properties in mild steel. J. Phys. D Appl. Phys. 21(12), 1807–1813 (1988). CrossRefGoogle Scholar
  35. 35.
    Degauque, J.: Soft magnetic materials: microstructure and properties. Solid State Phenom. 35–36, 335–352 (1993). CrossRefGoogle Scholar
  36. 36.
    Jian, X., Jian, X., Deng, G.: Experiment on relationship between the magnetic gradient of low-carbon steel and its stress. J. Magn. Magn. Mater. 321(21), 3600–3606 (2009). CrossRefGoogle Scholar
  37. 37.
    Wang, H.P., Dong, L.H., Dong, S.Y., Xu, B.S.: Fatigue damage evaluation by metal magnetic memory testing. J. Cent. South Univ. 21(1), 65–70 (2014). CrossRefGoogle Scholar
  38. 38.
    Cullity, B.D., Graham, C.D.: Introduction to Magnetic Materials, 2nd edn. Wiley, Hoboken (2011)Google Scholar
  39. 39.
    Li, L., Jiles, D.C.: Modified law of approach for the magnetomechanical model: application of the rayleigh law to stress. IEEE Trans. Magn. 39(5), 3037–3039 (2003). CrossRefGoogle Scholar
  40. 40.
    Jiles, D.C., Devine, M.K.: The law of approach as a means of modelling the magnetomechanical effect. J. Magn. Magn. Mater. 140–144, 1881–1882 (1995). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Xi’an University of Architecture and TechnologyXi’an CityChina

Personalised recommendations