Nonlinear Acoustic Spectroscopy and Frequency Sweep Ultrasonics: Case on Thermal Damage Assessment in Mortar

  • Vicente Genovés
  • Alicia Carrión
  • Daniel Escobar
  • Jorge Gosálbez
  • Jose Monzó
  • Maria Victoria Borrachero
  • Jordi PayáEmail author


An exhaustive study on thermal damage of Portland cement-based materials is addressed. Damage carried out at different temperatures on concrete between 40 and \(525\,^{\circ }\hbox {C}\) were assessed by means of microstructural, physical and nondestructive tests. Microstructural analysis (thermogravimetry and scanning electron microscopy) showed the principal changes of the Portland cement hydrated products for the different analysed temperatures. Compressive and flexural strengths remained constant or even increased at a low heating temperature range, while the mass loss increases. Dilatometry analysis revealed important information about deformation incompatibilities between the paste and the aggregate. These results have been correlated with nondestructive tests: nonlinear impact resonance acoustic spectroscopy (NIRAS) and ultrasonic measures. The dynamic modulus and ultrasonic pulse velocity have closely predicted the linear stiffness decay of the specimens. However, hysteretic parameter from NIRAS analysis exhibited a different trend from stiffness-related parameters, keeping constant until \(250\,^{\circ }\hbox {C}\) and suffering a huge increasing for 400 and \(525\,^{\circ }\hbox {C}\). Ultrasonic attenuation computed with a broadband ultrasonic signal (chirp) revealed interesting information about scattering components inside the material, and is sensitive to interfacial transition zone between aggregate and paste in a large range of frequencies. The correlation between microstructural, mechanical and nondestructive techniques were carried out successfully. Nonlinear vibration and ultrasonic attenuation are non-conventional parameters that gave specific information about a complex damage process, such as a thermal attack in highly heterogeneous materials (e.g. Portland cement composites).


Concrete Thermal damage Microstructure Nonlinear spectroscopy NIRAS Attenuation Chirp signal 



This work has been supported by the Spanish Administration under Grants, BES2015-071469, under the ONDATEST coordinated project, BIA2014-55311-C2-1-P and BIA2014-55311-C2-2-P. Thanks are given to FEDER funds for co-funding.


  1. 1.
    Aïtcin, P.C.: Binders for Durable and Sustainable Concrete. Taylor & Francis, London (2008)Google Scholar
  2. 2.
    Ma, Q., Guo, R., Zhao, Z., Lin, Z., He, K.: Mechanical properties of concrete at high temperature—a review. Constr. Build. Mater. 93, 371 (2015)CrossRefGoogle Scholar
  3. 3.
    Schneider, U.: Concrete at high temperatures—a general review. Fire Saf. J. 13(1), 55 (1988)CrossRefGoogle Scholar
  4. 4.
    Cruz, C.R., Gilien, M.: Thermal expansion of Portland cement paste, mortar and concrete at high temperatures. Fire Mater. 4(2), 66 (1980)CrossRefGoogle Scholar
  5. 5.
    Jay, A.H.: The thermal expansion of quartz by X-ray measurements. Proc. R. Soc. Lond. 142(846), 237 (1933)CrossRefGoogle Scholar
  6. 6.
    Malhotra, V., Carino, N.: Handbook on Nondestructive Testing of Concrete. Civil Engineering. CRC Press, Boca Raton (2004)Google Scholar
  7. 7.
    Van Den Abeele, K., Carmeliet, J., Ten Cate, J.A., Johnson, P.: Nonlinear elasticwave spectroscopy (NEWS) techniques to discern material damage. Part I: nonlinear wave modulation spectroscopy (NWMS). Res. Nondestruct. Eval. 12(1), 17 (2000)CrossRefGoogle Scholar
  8. 8.
    Johnson, P.A., Sutin, A.: Nonlinear elastic wave NDE I. Nonlinear resonant ultrasound spectroscopy and slow dynamics diagnostics. In: AIP Conference Proceedings (2005)Google Scholar
  9. 9.
    Leśnicki, K.J., Kim, J.Y., Kurtis, K.E., Jacobs, L.J.: Characterization of ASR damage in concrete using nonlinear impact resonance acoustic spectroscopy technique. NDT & E Int. 44(8), 721 (2011)CrossRefGoogle Scholar
  10. 10.
    Park, S.J., Yim, H.J., Kwak, H.G.: Nonlinear resonance vibration method to estimate the damage level on heat-exposed concrete. Fire Saf. J. 69, 36 (2014)CrossRefGoogle Scholar
  11. 11.
    Dahlen, U., Ryden, N., Jakobsson, A.: Damage identification in concrete using impact non-linear reverberation spectroscopy. NDT & E Int. 75, 15 (2015)CrossRefGoogle Scholar
  12. 12.
    Genovés, V., Carrión, A., Gosálbez, J., Bosch, I., Borrachero, M.V., Payá, J.J.: Optimized ultrasonic attenuation measures for internal sulphate attack monitoring in Portland cement mortars (1)Google Scholar
  13. 13.
    Genovés, V., Gosálbez, J., Carrión, A., Miralles, R., Payá, J.: Optimized ultrasonic attenuation measures for non-homogeneous materials. Ultrasonics 65, 345 (2016)CrossRefGoogle Scholar
  14. 14.
    Philippidis, T.P., Aggelis, D.G.: Experimental study of wave dispersion and attenuation in concrete. Ultrasonics 43(7), 584 (2005)CrossRefGoogle Scholar
  15. 15.
    Molero, M., Segura, I., Aparicio, S., Hernández, M.G., Izquierdo, MaG: On the measurement of frequency-dependent ultrasonic attenuation in strongly heterogeneous materials. Ultrasonics 50(8), 824 (2010)CrossRefGoogle Scholar
  16. 16.
    Genovés, V., Vargas, F., Gosálbez, J., Carrión, A., Borrachero, M., Payá, J.: Ultrasonic and impact spectroscopy monitoring on internal sulphate attack of cement-based materials. Mater. Design 125(Suppl C), 46 (2017)CrossRefGoogle Scholar
  17. 17.
    Park, G.K., Yim, H.J.: Evaluation of fire-damaged concrete: an experimental analysis based on destructive and nondestructive methods. Int. J. Concr. Struct. Mater. 11(3), 447 (2017)CrossRefGoogle Scholar
  18. 18.
    Payan, C., Ulrich, T., Le Bas, P., Griffa, M., Schuetz, P., Remillieux, M., Saleh, T.: Probing material nonlinearity at various depths by time reversal mirrors. Appl. Phys. Lett. 104(14), 144102 (2014)CrossRefGoogle Scholar
  19. 19.
    Payan, C., Ulrich, T.J., Le Bas, P.Y., Saleh, T., Guimaraes, M.: Quantitative linear and nonlinear resonance inspection techniques and analysis for material characterization: application to concrete thermal damage. J. Acoust. Soc. Am. 136(2), 537 (2014)CrossRefGoogle Scholar
  20. 20.
    Payan, C., Garnier, V., Moysan, J., Johnson, P.: Applying nonlinear resonant ultrasound spectroscopy to improving thermal damage assessment in concrete. J. Acoust. Soc. Am. 121(4), EL125 (2007)CrossRefGoogle Scholar
  21. 21.
    Yim, H.J., Kim, J.H., Park, S.J., Kwak, H.G.: Characterization of thermally damaged concrete using a nonlinear ultrasonic method. Cem. Concr. Res. 42(11), 1438 (2012)CrossRefGoogle Scholar
  22. 22.
    Borrachero, M.V., Payá, J., Bonilla, M., Monzó, J.: The use of thermogravimetric analysis technique for the characterization of construction materials. J. Therm. Anal. Calorim. 91, 503–509 (2008)CrossRefGoogle Scholar
  23. 23.
    Genovés, V., Soriano, L., Borrachero, M., Eiras, J., Payá, J.: Preliminary study on short-term sulphate attack evaluation by non-linear impact resonance acoustic spectroscopy technique. Constr. Build. Mater. 78, 295 (2015)CrossRefGoogle Scholar
  24. 24.
    Krautkrämer, J., Krautkrämer, H.: Ultrasonic Testing of Materials. Springer, New York (1983)CrossRefGoogle Scholar
  25. 25.
    Gaydecki, P.A., Burdekin, F.M., Damaj, W., John, D.G.: The propagation and attenuation of medium-frequency ultrasonic waves in concrete: a signal analytical approach. Meas. Sci. Technol. 3(1), 126 (1992)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.ICITECHUniversitat Politècnica de ValènciaValenciaSpain
  2. 2.ITEAMUniversitat Politècnica de ValènciaValenciaSpain

Personalised recommendations