Preliminary Study of an Underwater Wireless Sensor Designed for Interrogating the Environmental Condition of Flexible Pipe Annulus

  • Matheus F. KuhnEmail author
  • Ricardo C. Jacques
  • Thomas G. R. Clarke


In recent years a number of high-profile cases have shown that flexible pipes are particularly susceptible to the aggressive environments occasionally found in deep-water oil and gas exploration. Ruptures in the outer polymeric layers of the flexible pipes are relatively common in these structures; this often leads to seawater ingress and, under specific conditions involving pressure and CO2, stress–corrosion cracking of inner metallic layers may occur. In this scenario, a non-destructive technique that is capable of detecting flooding of the annulus region of flexible pipes becomes desirable. Radio frequency identification (RFID) is a well-established technology that allows wireless reading of dedicated low-profile tags. Furthermore, these tags, when designed appropriately, can also detect changes in the surrounding environment, and could in principle be used to detect, for example, seawater ingress in the annular space of flexible pipes. In this paper, a preliminary version of a RFID sensor was designed in order to test this concept through the use of finite-element modelling, and a prototype was used for validation and testing. Results show a marked change in frequency–response between dry and wet conditions. The sensor also allowed differentiation between water or oil-flooding of the surroundings, and also showed to be capable of quantifying proportions in water–ethylene glycol and water–CO2 mixtures if adequately calibrated.


Structural health monitoring RFID Interdigital capacitor (IDC) 



CNPq – Conselho Nacional de Desenvolvimento Científico e Tecnológico - who partly financed this research through a scholarship for Mr. Kuhn.


  1. 1.
    Farrar, C.R., Worden, K.: Structure Health Monitoring—A Machine Learning Perspective, pp. 3–8. Wiley, Hoboken (2013). CrossRefGoogle Scholar
  2. 2.
    Cawley, P., Cegla, F., Galvagni, A.: Guided Waves for NDT and Permanently Installed Monitoring, Curran Associates Inc USA, Project number 0389, p. 78 (2012). Accessed 10 Jan 2019
  3. 3.
    Cheng, A., Chen, N.: An extended engineering critical assessment for corrosion fatigue of subsea pipeline steels. Eng. Fail. Anal. 84, 262–275 (2018). CrossRefGoogle Scholar
  4. 4.
    subsea: Un-bonded Flexible Risers—Recent Field Experience and Actions for Increased Robustness, PSA Norway. (2013). Accessed 10 Jan 2019
  5. 5.
    SEAFLEX. Failure modes, inspection, testing and monitoring, PSA Norway (2007). Accessed 10 Jan 2019
  6. 6.
    Esaklul, K.A., Ahmed, T.M.: Prevention of failures of high strength fasteners in use in offshore and subsea applications. Eng. Fail. Anal. 16, 1195–1202 (2009). CrossRefGoogle Scholar
  7. 7.
    Jeong, D., Jung, W., Kim, Y., et al.: Stress corrosion cracking behavior of X80 steel in artificial seawater under controlled strain rate and applied potentials. Met. Mater. Int. 21, 785 (2015). CrossRefGoogle Scholar
  8. 8.
    Fraser, M.: Materials for flexible riser systems: problems and solutions. Eng. Struct. 11(4), 208–216 (1989). CrossRefGoogle Scholar
  9. 9.
    Webb, D.G.: Inspection and repair of oil and gas production installations in deep water. Ocean Manag. 7(1981), 313–326 (1981). CrossRefGoogle Scholar
  10. 10.
    Bondevik, J., Lunde, S., Haakonsen, R.: Annulus testing for condition assessment and monitoring of flexible pipes. In: ASME International Conference on Offshore Mechanics and Arctic Engineering, 23rd International Conference on Offshore Mechanics and Arctic Engineering, vol. 1, Parts A and B, pp. 763–768.
  11. 11.
    Dahl, C.S., Andersen, B.A.M., Gronne, M.: Developments in managing flexible risers and pipelines, a suppliers perspective. In: Offshore Technology Conference (2011).
  12. 12.
    Zarifi, M.H., Deif, S., Abdolrazzaghi, M.: A microwave ring resonator sensor for early detection of breaches in pipeline coatings. IEEE Trans. Ind. Electron. 65, 1626–1635 (2018). CrossRefGoogle Scholar
  13. 13.
    Henry, D., Hester, J.G.D., Aubert, H.: Long-range wireless interrogation of passive humidity sensors using van-atta cross-polarization effect and different beam scanning techniques. IEEE Trans. Microw. Theory Tech. 65, 5345–5354 (2017). CrossRefGoogle Scholar
  14. 14.
    Deng, F., He, Y., Li, B.: Design of a slotted chipless RFID humidity sensor tag. Sensors Actuat. B 264, 255–262 (2018). CrossRefGoogle Scholar
  15. 15.
    Sidén, J., Zeng, X., Unander, T.: Remote moisture sensing utilizing ordinary rfid tags, sensors. In: IEEE SENSORS 2007 Conference, USA, 2007. 2007 IEEE USA, vol. 1, pp. 308–311, October 2007 (2007).
  16. 16.
    Occhiuzzi, C., Rida, A., Marrocco, G., Tentzeris, M.: RFID passive gas sensor integrating carbon nanotubes. IEEE Trans. Microw. Theory Tech. 59, 2674–2684 (2011). CrossRefGoogle Scholar
  17. 17.
    Eom, K.H., Kim, M.C., Lee, S.: The vegetable freshness monitoring system using RFID With oxygen and carbon dioxide sensor. Int. J. Distrib. Sensors Netw. 8, 1–6 (2012). CrossRefGoogle Scholar
  18. 18.
    Roberts, C.M.: Radio frequency identification (RFID). Comput. Secur. 25, 18–26 (2006). CrossRefGoogle Scholar
  19. 19.
    Benelli, G., Pozzebon, A.: RFID under water: technical issues and applications, radio frequency identification from system to applications, Mamun Bin Ibne Reaz, IntechOpen (2013). Google Scholar
  20. 20.
    Pozzebon, A.: Bringing near field communication under water: short range data exchange in fresh and salt water. In: 2015 International EURASIP Workshop on RFID Technology (EURFID), Germany. IEEE, pp. 152–156, October 2015 (2015).
  21. 21.
    ST AN2866. How to design a 13.56 MHz customized antenna for ST25 NFC/RFID Tags. Application note. (2016). Accessed 23 Jan 2019
  22. 22.
    MICROCHIP. Antenna circuit design for RFID applications. AN710. (2013). Accessed 23 Jan 2019
  23. 23.
    Rivadeneyra, A., Slamerón, J.F., Agudo, M.: Design and characterization of a low thermal drift capacitive humiditysensor by inkjet-printing. Sensors Actuat. B 195, 123–131 (2014). CrossRefGoogle Scholar
  24. 24.
    Ibrahim, M., Claudel, J., Kourtiche, D., Nadi, M.: Geometric parameters optimization of planar interdigitated electrodes for bioimpedance spectroscopy. J. Electr. Bioimpedance 4, 13–22 (2013). CrossRefGoogle Scholar
  25. 25.
    Salmerón, J.F., Rivadeneyra, A., Agudo, M., Rodríguez, C., Capitan-Vallvey, L.F., Palma, A.J.: HF RFID tag as humidity sensor: two different approaches. IEEE Sensors J. 15, 5726–5733 (2015). CrossRefGoogle Scholar
  26. 26.
    Zarifi, M.H., Daneshmand, M.: High-resolution RFID Liquid sensing using a chipless tag. IEEE Microw. Wirel. Compon. Lett. 27, 311–313 (2017). CrossRefGoogle Scholar
  27. 27.
    Zarifi, M.H., Deif, S., Daneshmand, M.: Wireless passive RFID sensor for pipeline integrity monitoring. Sensors Actuat. A 261, 24–29 (2017). CrossRefGoogle Scholar
  28. 28.
    Zhang, S., Pasupathy, P., Neikirk, D.: Microfabricated self-resonant structure as a passive wireless dielectric constant and conductivity sensor. Microsyst. Technol. 18, 885–891 (2012). CrossRefGoogle Scholar
  29. 29.
    Yang, C.H., Chien, J., Wang, B., Chen, P., Lee, D.: A flexible surface wetness sensor using a RFID technique. Biomed. Microdevices 10, 47–54 (2008). CrossRefGoogle Scholar
  30. 30.
    Hegg, M.C., Mamishev, A.V.: Influence of variable plate separation on fringing electric fields in parallel-plate capacitors. In: Conference Record of the 2004 IEEE International Symposium on Electrical Insulation, USA, 2004. IEEE. USA, vol. 1, pp. 384–387, September 2004 (2004).
  31. 31.
    Hu, X., Yang, W.: Planar capacitive sensors—designs and applications. Sensor Rev. 30(1), 24–39 (2010). CrossRefGoogle Scholar
  32. 32.
    COMSOL Multiphysics®. Stockholm, Sweden
  33. 33.
    Hatton, S.: Effects of High Temperature on the Design of Deepwater Risers, SUT. Accessed 19 March 2019. (2003)
  34. 34.
    Qing, X., Chen, Z.N.: Proximity effects of metallic environments on high frequency RFID reader antenna: study and applications. IEEE Trans. Antennas Propag. 55, 3105–3111 (2007). CrossRefGoogle Scholar
  35. 35.
    Li, L., Gao, Z., Wang, Y.: NFC antenna research and a simple impedance matching method. In: 2011 International Conference on Electronic & Mechanical Engineering and Information Technology, USA, 2004. IEEE. China, vol. 1, pp. 3968–3972 (2011).
  36. 36.
    Akerlop, G.: Dielectric constants of some organic solvent-water mixtures at various temperatures. J. Am. Chem. Soc. 54, 4125–4139 (1932). CrossRefGoogle Scholar
  37. 37.
    Manning, F.S., Thompson, R.E.: Oilfield Processing of Petroleum: Crude oil, PennWell Books. vol. 2, p. 214, ISBN 0-87814-354-8 (1995)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Physical Metallurgy Laboratory (LAMEF) PPGE3 M/UFRGS - Universidade Federal do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations