Advertisement

Quantitative Simultaneous Determination for Young’s Modulus and Adhesion of Low-k Thin Film by Non-destructive CZM-SAW Technique

  • Haiyang Qi
  • Xia XiaoEmail author
  • Tao Kong
Article
  • 22 Downloads

Abstract

Adhesion and Young’s modulus are of great interest in thin film science because these two properties are the most vital factors in determining the durability and stability of the device. Insufficient Young’s modulus and adhesion property are the most serious problems encountered in the application of low-k thin film which is widely used in microelectronic industry. In this study, the nondestructive surface acoustic wave (SAW) technique with cohesive zone model (CZM) is employed to determine the quantitative thin film Young’s modulus and adhesion simultaneously. By studying the influence of film adhesion on the determination of film Young’s modulus, a film adhesion and Young’s modulus simultaneous measuring method is proposed. Based on the original CZM-SAW technique, comprehensive matching process is executed in this simultaneous measuring method. By this method, interactive effects of these two parameters are taken into consideration in the determining process so that more accurate adhesion and Young’s modulus results can be acquired. In this paper, the adhesion and Young’s modulus of SiO2 films and porous Black Diamond film are measured by the CZM-SAW technique. This study presents a high-precision measuring method for film adhesion and Young’s modulus. This paper also shows the promising advantages of the CZM-SAW technique in characterization of thin film properties.

Keywords

Adhesion Young’s modulus Low-k film Surface acoustic waves Cohesive zone model Nondestructive testing 

Notes

Acknowledgements

The authors are grateful to the support of National Science Foundation of China (Grant No. 61571319).

References

  1. 1.
    Seo, H.J., Nam, S.H., Kim, S., Boo, J.H.: Organic and organic–inorganic hybrid polymer thin films deposited by PECVD using TEOS and cyclohexene for ULSI interlayer-dielectric application. Appl. Surf. Sci. 354, 134–138 (2015)CrossRefGoogle Scholar
  2. 2.
    Jin, F.Y., Chang, K.C., Chang, T.C., Tsai, T.M., Pan, C.H., Lin, C.Y., Chen, P.H., Chen, M.C., Huang, H.C., Lo, I., Zheng, J.C., Sze, S.M.: Reducing operation voltages by introducing a lowk switching layer in indium–tin-oxide-based resistance random access memory. Appl. Phys. Express 9, 061501 (2016)CrossRefGoogle Scholar
  3. 3.
    Shima, K., Tu, Y., Takamizawa, H., Shimizu, H., Momose, T., Inoue, K., Nagai, Y., Shimogaki, Y.: Role of W and Mn for reliable 1X nanometer-node ultra-large-scale integration Cu interconnects proved by atom probe tomography. Appl. Phys. Lett. 105, 133512 (2014)CrossRefGoogle Scholar
  4. 4.
    Cho, S.J., Bae, I.S., Jeong, H.D., Boo, J.H.: A study on electrical and mechanical properties of hybrid-polymer thin films by a controlled TEOS bubbling ratio. Appl. Surf. Sci. 254, 7817–7820 (2008)CrossRefGoogle Scholar
  5. 5.
    Vanstreels, K., Pantouvaki, M., Ferchichi, A., Verdonck, P., Conard, T., Ono, Y., Matsutani, M., Nakatani, K., Baklanov, M.R.: Effect of bake/cure temperature of an advanced organic ultra low-k material on the interface adhesion strength to metal barriers. J. Phys. D 109, 074301 (2011)Google Scholar
  6. 6.
    Chen, A., Mu, W.B., Chen, Y.: Compressive elastic moduli and polishing performance of non-rigid core/shell structured PS/SiO2 composite abrasives evaluated by AFM. Appl. Surf. Sci. 290, 433–439 (2014)CrossRefGoogle Scholar
  7. 7.
    Volinsky, A.A., Vella, J.B., Gerberich, W.W.: Fracture toughness, adhesion and mechanical properties of low-k dielectric thin films measured by nanoindentation. Thin. Solid. Films. 429, 201–210 (2003)CrossRefGoogle Scholar
  8. 8.
    Adhihetty, I.S., Vella, J.B., Volinsky, A.A., Goldberg, C., Gerberich, W.W.: Nanoscale Problems Symposium, Proceedings of 10th International Congress on Fracture, Honolulu, USA, December 2–6, 2001. Organized by W.W. Gerberich, R.H. Dauskardt, K. Tanaka.Google Scholar
  9. 9.
    Kim, J., Kim, K.S., Kim, Y.H.: Mechanical effects in peel adhesion test. J. Adhes. Sci. Technol. 3, 175–187 (1999)CrossRefGoogle Scholar
  10. 10.
    Atanacio, A.J., Latella, B.A., Barbe, C.J., Swain, M.V.: Mechanical properties and adhesion characteristics of hybrid sol–gel thin films. Surf. Coat. Technol. 192, 354–364 (2005)CrossRefGoogle Scholar
  11. 11.
    Chow, G., Miller, P., Wang, J.: Correlation between laser-induced surface acoustic waves and nanoindentation on elastic modulus measurement of a nanoporous zeolite thin film. Exp. Mech. 55, 647–650 (2015)CrossRefGoogle Scholar
  12. 12.
    Baklanov, M.R., Denis, S.: Porous Polymers, pp. 206–207. Wiley, New York (2011)Google Scholar
  13. 13.
    Link, A., Sooryakumar, R., Bandhu, R.S., Antonelli, G.A.: Brillouin light scattering studies of the mechanical properties of ultrathin low-k dielectric films. J. Appl. Phys. 100, 013507 (2006)CrossRefGoogle Scholar
  14. 14.
    Okudur, O.O., Vanstreels, K., De, W.I., Hangen, U., Qiu, A.Q.: Substrate Independent elastic modulus of thin low dielectric constant materials. Adv. Eng. Mater. 19, 1600653 (2017)CrossRefGoogle Scholar
  15. 15.
    Park, T.S., Park, I.K., Yoshida, S.: Evaluation of the adhesion on the nano-scaled polymeric film systems. Ultrasonics. 76, 166–176 (2017)CrossRefGoogle Scholar
  16. 16.
    Bensalem, S., Amouri, C., Houari, H., Belachia, M.: Influence of recycled fines on the flexural creep of self-compacting concrete beams under four-point bending load. J. Adhes. Sci. Technol. 31, 1515–1523 (2017)CrossRefGoogle Scholar
  17. 17.
    Gee, C., Weddell, J.N., Swain, M.V.: Comparison of three and four point bending evaluation of two adhesive bonding systems for glass-ceramic zirconia bi-layered ceramics. Dent. Mater. 33, 1004–1011 (2017)CrossRefGoogle Scholar
  18. 18.
    Veysset, D., Maznev, A.A., Veres, I.A., Pezeril, T., Kooi, S.E., Lomonosov, A.M., Nelson, K.A.: Acoustical breakdown of materials by focusing of laser-generated Rayleigh surface waves. Appl. Phys. Lett. 111, 031901 (2017)CrossRefGoogle Scholar
  19. 19.
    Xiao, X., Shan, X.M., Kayaba, Y., Kohmora, K., Tanaka, H., Kikkawa, T.: Young’s modulus evaluation by SAWs for porous silica low-k film with cesium doping. Microelectron. Eng. 88, 666–670 (2011)CrossRefGoogle Scholar
  20. 20.
    Xiao, X., Qi, H.Y., Sui, X.L., Kikkawa, T.: Evaluation and criterion determination of the low-k thin film adhesion by the surface acoustic waves with cohesive zone model. Appl. Surf. Sci. 399, 599–607 (2017)CrossRefGoogle Scholar
  21. 21.
    Xiao, X., Qi, H.Y., Tao, Y., Kikkawa, T.: Study on the interfacial adhesion property of low-k thin film by the surface acoustic waves with cohesive zone model. Appl. Surf. Sci. 388, 448–454 (2016)CrossRefGoogle Scholar
  22. 22.
    Jenot, F., Fourez, S., Ouaftouh, M., Duquennoy, M.: Nondestructive testing of thin films using surface acoustic waves and laser ultrasonics. AIP Conf. Proc. 1949, 230031 (2018)CrossRefGoogle Scholar
  23. 23.
    Xiao, X., Hata, N., Yamada, K., Kikkawa, T.: Mechanical property determination of thin porous low-k films by twin-transducer laser generated surface acoustic waves. Jpn. J. Appl. Phys. 43, 508–513 (2004)CrossRefGoogle Scholar
  24. 24.
    Chen, Y.T., Liu, K.X.: Crack propagation in viscoplastic polymers: heat generation in near-tip zone and viscoplastic cohesive model. Appl. Phys. Lett. 106, 061908 (2015)CrossRefGoogle Scholar
  25. 25.
    Kubair, D.V., Spearing, S.M.: Cohesive zone model for direct silicon wafer bonding. J. Phys. D 40, 3070 (2007)CrossRefGoogle Scholar
  26. 26.
    Richter, F., Herrmann, M., Molnar, F., Chudoba, T., Schwarzer, N., Keunecke, M., Bewilogua, K., Zhang, X.W., Boyen, H.G., Ziemann, P.: Substrate influence in Young’s modulus determination of thin films by indentation methods: Cubic boron nitride as an example. Surf. Coat. Technol. 201, 3577–3587 (2006)CrossRefGoogle Scholar
  27. 27.
    Valier-Brasier, T., DeHoux, T., Audoin, B.: Scaled behavior of interface waves at an imperfect solid-solid interface. J. Appl. Phys. 112, 024904 (2012)CrossRefGoogle Scholar
  28. 28.
    Jansen, I., Schneider, D., Häßler, R.: Laser-acoustic, thermal and mechanical methods for investigations of bond lines. Int. J. Adhes. Adhes. 29, 210–216 (2009)CrossRefGoogle Scholar
  29. 29.
    Liu, Y.L., Xiao, X., Shan, X.M., Fu, S.C.: Young’s modulus detection for the low-k film by laser-generated SAWs. In: International Symposium on Photonics and Optoelectronics, Wuhan, China, pp. 69–72 (2009).Google Scholar
  30. 30.
    Fujii, N., Kohmura, K., Nakayama, T., Tanaka, H., Hata, N., Seino, Y., Kikkawa, T.: Fabrication of mesoporous silica for ultra-low-k interlayer dielectrics. In: Nanofabrication: Technologies, Devices, and Applications II, Boston, United States, p. 60020N (2005).Google Scholar
  31. 31.
    Schneider, D., Ollendorf, H., Schwarz, T.: Non-destructive evaluation of the mechanical behavior of TiN-coated steels by laser-induced ultrasonic surface waves. Appl. Phys. A 61, 277–284 (1995)CrossRefGoogle Scholar
  32. 32.
    Herrmann, M., Richter, F.: On the usage of the effectively shaped indenter concept for analysis of yield strength. J. Mater. Res. 24, 1258–1269 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology, School of MicroelectronicsTianjin UniversityTianjinChina

Personalised recommendations