Modelling of Infrared Glow in Rock Holes

  • A. A. Bespalko
  • V. A. Shtirts
  • P. I. FedotovEmail author
  • A. O. Chulkov
  • L. V. Yavorovich


Infrared glow in fan-shaped boreholes was studied and measured along four cardinal directions and in vertical direction in block 12, northwestern site, sublevel 6, horizon minus 210, the Tashtagol iron ore mine. It is shown that the difference in the glow temperature can reach 3° C in the eastern direction and in vertical fan-shaped boreholes. The results were obtained for physical modeling of the glow in the holes of the magnetite ore samples. The patterns of changes in the intensity of infrared glow of the magnetite ore samples under uniaxial or shear compression are shown. The changes in the infrared glow temperature are found to correspond to the stages of fracture development. In this case, the temperature of the IR glow changes in accordance with the stages of fracture development. Changes in the electromagnetic emission are given in accordance with the stages of preparation and development of fracture of the magnetite ore sample of similar structure. Possible mechanisms of energy supply for heating rocks in the vicinity of boreholes and holes are discussed. The data obtained indicate the efficiency of IR thermometry for detection of stressed rock massif areas in the vicinity of boreholes with increased glow intensity.


Infrared thermography Rocks Stress–strain state Holes Destructive processes 



The study was supported by the Ministry of Education and Science of the Russian Federation within the framework of the State task in the field of scientific activity, Project No. 11.980.2017/4.6.


  1. 1.
    Luong, M.P.: Infrared thermography of fracture of concrete and rock. In: Shah, S.P., Swartz, S.E. (eds.) Fracture of Concrete and Rock, pp. 343–353. Springer, New York (1989). CrossRefGoogle Scholar
  2. 2.
    Luong, M.P.: Infrared thermovision of damage processes in concrete and rock. Eng. Fract. Mech. 35(1–3), 291–301 (1990). CrossRefGoogle Scholar
  3. 3.
    Sheinin, V.I., Blokhin, D.I.: Features of thermomechanical effects in rock salt samples under uniaxial compression. J. Min. Sci. 48(1), 39–45 (2012). CrossRefGoogle Scholar
  4. 4.
    Malshin, A.A.: Experimental study of the kinetics of accumulation of elementary damages in rock fracture by pulsed electromagnetic radiation in the wavelength and radio ranges. Dissertation, Tomsk State University of Control Systems and Radioelectronics (2000) (in Russian) Google Scholar
  5. 5.
    Muzaffar, K., Chatterjee, K., Giri, L.I., et al.: Modelling and analysis of power distribution of electromagnetic waves on plane surfaces using lock-in IR thermography. J. Nondestr. Eval. 36, 60 (2017). CrossRefGoogle Scholar
  6. 6.
    Sheinin, V.I., Motovilov, E.A., Morozov, A.A., Favorov, A.V.: Identification of stresses in rocks on the basis of changes in density of infrared radiation flux. J. Min. Sci. 35(6), 602–607 (1999). CrossRefGoogle Scholar
  7. 7.
    Sheinin, V.I., Levin, B.W., Motovilov, E.A.: Infrared diagnostics of stress variations in rock: the possibilities for monitoring prelim it mechanical processes in the earth’s crust. J. Earthq. Predict. Res. 6(1), 138–147 (1997)Google Scholar
  8. 8.
    Balageas, D., Maldague, X., Burleigh, D., Vavilov, V.P., Oswald-Tranta, B., Roche, J.M., Carlomagno, G.M.: Thermal (IR) and other NDT techniques for improved material inspection. J. Nondestr. Eval. 35(1), 1–17 (2016). CrossRefGoogle Scholar
  9. 9.
    Vavilov, V., Świderski, W., Derusova, D.: Ultrasonic and optical stimulation in IR thermographic NDT of impact damage in carbon composites. Quant. InfraRed Thermogr. J. 12(2), 162–172 (2015). CrossRefGoogle Scholar
  10. 10.
    Luong M.P.: Infrared thermographic evaluation of fatigue behavior of concrete. In: Transactions of 14th International Conference on Structural Mechanics in Reactor Technology (SMiRT 14), Lyon, France, August 17–22, pp. 155–162 (1997)Google Scholar
  11. 11.
    Squarzoni C., Galgaro A., Teza G. et al.: Terrestrial laser scanner and infrared thermography in rock fall prone slope analysis. Geophys. Res. Abstr. 10 EGU2008-A-09254 (2008)Google Scholar
  12. 12.
    Mineo, S., Pappalardo, G., Rapisarda, F., Cubito, A., Di Maria, G.: Integrated geostructural, seismic and infrared thermography surveys for the study of an unstable rock slope in the Peloritani Chain (NE Sicily). Eng. Geol. 195, 225–235 (2015). CrossRefGoogle Scholar
  13. 13.
    Pappalardo, G., Mineo, S., PerrielloZampelli, S., Cubito, A., Calcaterra, D.: InfraRed thermography proposed for the estimation of the cooling rate index in the remote survey of rock masses. Int. J. Rock Mech. Min. Sci. 83, 182–196 (2016). CrossRefGoogle Scholar
  14. 14.
    Ivo, Baroň, David, Bečkovský, Lumír, Míča: Application of infrared thermography for mapping open fractures in deep-seated rockslides and unstable cliffs. Landslides 11(1), 15–27 (2014). CrossRefGoogle Scholar
  15. 15.
    Bespalko, A.A., Yavorovich, L.V., Moiseev, S.V.: Control of rock mass by mine Tashtagol method IR-radiometer. Strateg. Technol. (IFOST) 2, 228–231 (2012). CrossRefGoogle Scholar
  16. 16.
    Bespalko A.A., Yavorovich L.V., Moiseev S.V.: Investigation of the stress–strain state of the rock massif by IR-radiometry. Sib. J. Sci. 3(4), 74–79 (2012). (in Russian)
  17. 17.
    Kurlenia, M.V., Eremenko, A.A., Shrepp, B.V.: Geomechanical issues of exploitation of iron ore deposits of Siberia. Nauka, Novosibirsk (2001) (in Russian) Google Scholar
  18. 18.
    Egorov, P.V.: Geomechanical substantiation of the technology of mining mineral deposits. FTPRPI 2, 112–118 (1986). (in Russian) Google Scholar
  19. 19.
    Lobanova, T.V.: Rock displacement at Tashtagol ore mine as a reflection of geodynamic processes. Bull. Sib. State Ind. Univ. 1, 16–22 (2012). (in Russian) Google Scholar
  20. 20.
    Lobanova, T.V.: Geomechanical state of the rock mass at the Tashtagol mine in the course of nucleation and manifestation of rock bursts. J. Min. Sci. 44(2), 38–46 (2008). CrossRefGoogle Scholar
  21. 21.
    Bespalko, A.A., Surzhikov, A.P., Yavorovich, L.V., Shtirts, V.A., et al.: Observation of changes in the stress state of the rock massif after a mass explosion using the parameters of electromagnetic emission. Phys. Mesomech. 7(2), 253–256 (2004). (in Russian) Google Scholar
  22. 22.
    Belikov, B.P., Aleksandrov, K.S., Ryzhova, T.V.: Elastic Properties of Rock-Forming Minerals and Rocks. Nauka, Moskva (1970). (in Russian) Google Scholar
  23. 23.
    Hatiashvili, N.G.: On electromagnetic radiation in the destruction of alkali-halide crystals and some rocks. Earthq. Forecast. 4, 103–111 (1983). (in Russian) Google Scholar
  24. 24.
    Kurlenya, M.V., Oparin, V.N.: Electrometric technique for determining the stress-strain state of rock bodies. Doklady of the Academy of Sciences of the USSR. Earth Sci. Sect. 313(4), 18–23 (1990)Google Scholar
  25. 25.
    Yavorovich, L.V., Gold, R.M., Yevseyev, V.D., Khorsov, N.N.: Investigation of distributions of electromagnetic-signal parameters during uniaxial compression of rocks. J. Min. Sci. 36(6), 536–540 (2000). CrossRefGoogle Scholar
  26. 26.
    Bespalko, A.A., Yavorovich, L.V., Kolesnikova, S.I., Bukreev, V.G., Mertvetsov, A.N., Fedotov, P.I.: Investigation of changes in the characteristics of electromagnetic signals during uniaxial compression of rock samples from Tashtagol ore mine. Russ. Phys. J. 1–2, 78–85 (2011). (in Russian) Google Scholar
  27. 27.
    Bespalko, A.A., Yavorovich, L.V., Fedotov, P.I.: Diagnostics of destruction zone development in rock specimens during uniaxial compression based on the spectral characteristics of electromagnetic signals. Russ. J. Nondestr. Test 47(10), 680–686 (2011). CrossRefGoogle Scholar
  28. 28.
    Lacidogna, G., Carpinteri, A., Manuello, A., Durin, G., Schiavi, A., Niccolini, G., Agosto, A.: Acoustic and electromagnetic emissions as precursor phenomena in failure processes. Strain 47(2), 144–152 (2011). CrossRefGoogle Scholar
  29. 29.
    Fursa, T.V., Dann, D.D., Petrov, M.V., Lykov, A.E.: Evaluation of damage in concrete under uniaxial compression by measuring electric response to mechanical impact. J. Nondestr. Eval. 36, 30 (2017). CrossRefGoogle Scholar
  30. 30.
    Bespalko, A.A., Yavorovich, L.V., Fedotov, P.I., Viitman, E.V.: Mechanoelectric transformations in rocks of the Tashtagol iron ore deposit. Geodynamics 1(7), 54–60 (2008)CrossRefGoogle Scholar
  31. 31.
    Siegel, R., Howell, J.R.: Thermal radiation heat transfer. New Jourk. (Translation into Russian) M.: MIR, 1975 (1972)Google Scholar
  32. 32.
    Thompson W.: (Lord Kelvin). Mathematical and Physical Papers. London (1890)Google Scholar
  33. 33.
    Gilyarov, V.L., Slutsker, A.I., Volodin, V.P., Laius, A.I.: Energy of the thermoelastic effect in solids. Solid State Phys. 40(8), 1548–1551 (1998). (in Russian) CrossRefGoogle Scholar
  34. 34.
    Irwin, G.R.: Analysis of stresses and strains near the end of a crack traversing a plate. J. Appl. Mech. 24(3), 361–364 (1957)Google Scholar
  35. 35.
    Regel, V.R., Slutsker, A.I., Tomashevskiy, E.E.: The Kinetic Nature of the Strength of Solids. Nauka, Moskva (1974). (in Russian) Google Scholar
  36. 36.
    Chanturiya, V.A., Trubetskoy, K.N., Viktorov, S.D., Bunin, I.Zh.: Nanoparticles in the processes of destruction and dissection of geomaterials. Research Institute of Comprehensive Exploitation of Mineral Resource, RAS (2006) (in Russian) Google Scholar
  37. 37.
    Viktorov, S.D., Kachanov, A.N., Odintsov, V.N., Osokin, A.A.: Emission of submicron particles in rocks under deformation. Bull. Russ. Acad. Sci. Phys. 76(3), 388–390 (2012). (in Russian) Google Scholar
  38. 38.
    Kovalenko, A.D.: Thermoelasticity. Publ. House of Academy of Sciences of the Ukrainian SSR, Kiev (1975). (in Russian) Google Scholar
  39. 39.
    Kushnir, R.M., Nikolishin, A.M., Osadchuk, V.A.: The problem of thermoelasticity for orthotropic cylindrical shell with a transverse through crack. Fundam. Appl. Mech. 37, 109–113 (2003). (in Russian) Google Scholar
  40. 40.
    Griffith, A.A.: The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. Lond. A 221, 163–198 (1921)CrossRefGoogle Scholar
  41. 41.
    Egorov, P.V., Shtumpf, G.G., Renev, A.A., Shevelev, Y.A., Mahrakov, I.V., Sidorchuk, V.V.: Geomechanics. Kuzbass State Technical University, Kemerovo (2002). (in Russian) Google Scholar
  42. 42.
    Finkel, V.M.: Physical Basis of Fracture Deceleration. Metallurgy, Moscow (1977). (in Russian) Google Scholar
  43. 43.
    Cherepanov, G.P.: Mechanics of Brittle Failure. Nauka, Moskva (1974). (in Russian) Google Scholar
  44. 44.
    Babichev, A.P., Babushkina, N.A., Bratkovskiy, A.M., et al.: Physical quantities. In: Meylihova, E.Z., Grigoriev, I.S. (eds.) Handbook. Energoatomizdat, Moskva (1991). (in Russian) Google Scholar
  45. 45.
    Klark, S., (ed.): Handbook of Physical Constants of Rocks. Moskva, Mir. (1969) (in Russian) Google Scholar
  46. 46.
    Bespalko, A.A., Fedotov, P.I., Yavorovich, L.V.: Recorder of electromagnetic and acoustic signals to control the strength and destruction of materials and rock massifs. Bull. Tomsk Polytech. Univ. 312(2), 255–258 (2008). (in Russian) Google Scholar
  47. 47.
    Bombizov, A.A., Bespalko, A.A., Loschilov, A.G.: Autonomous recorder of electromagnetic and acoustic signals for monitoring mine structures. Exp. Devices Equip. 1, 141–143 (2013). (in Russian) Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Tomsk Polytechnic UniversityTomskRussia
  2. 2.Tashtagol Branch of JSC EvrazRudaKemerovoRussia

Personalised recommendations