Advertisement

Effect of Water-to-Cement Ratio on Acoustic Nonlinearity of a Hardened Mortar

  • Veniamin NazarovEmail author
  • Andrey Kolpakov
  • Andrey Radostin
Article

Abstract

We present the results of experimental and theoretical studies of nonlinear acoustic phenomena (amplitude-dependent losses, resonant frequency shifts, generation of the second and third harmonics of a low-frequency (LF) wave, and self-action of ultrasonic finite-amplitude pulses) in rod resonators made of cement and river sand with various values of water–cement ratios (w/cs; 0.5, 0.6 and 0.9). We have also provided an analytical description of the observed phenomena within the frameworks of the phenomenological equations of state that contain LF hysteretic and high-frequency elastic nonlinearities. By analyzing the experimental and theoretical amplitude dependences of the nonlinear phenomena we determined values of the nonlinearity parameters of test materials. Comparison of changes in the measured nonlinear acoustic and strength properties of these materials demonstrates that an increase in the w/c, which leads to a decrease in the strength of the resulting mortars, also leads to an increase in its acoustic nonlinearity.

Keywords

Cement-based materials Nonlinearity Resonance Hysteresis Water-to-cement ratio 

Notes

Acknowledgements

This work was supported by Program No. 7 “Topical Issues of Photonics and Sounding of Inhomogeneous Media and Materials” of the Presidium of the Russian Academy of Sciences, within the framework of the state assignment in the field of scientific research (Project No. 2.1433.2017/4.6) and under financial support of the Council for the Grants of the President of the Russian Federation for the State Support of the Leading Scientific Schools of the Russian Federation (Project No. NSh-2685.2018.5).

References

  1. 1.
    Nazarov, V.E., Ostrovsky, L.A., Soustova, I.A., Sutin, A.M.: Nonlinear acoustics of micro-inhomogeneous media. Phys. Earth Planet. Interiors 50, 65–73 (1988).  https://doi.org/10.1016/0031-9201(88)90094-5 CrossRefGoogle Scholar
  2. 2.
    Guyer, R.A., Johnson, P.A.: Nonlinear Mesoscopic Elasticity: The Complex Behaviour of Rocks, Soil, Concrete. Wiley, Weinheim (2009)CrossRefGoogle Scholar
  3. 3.
    Nazarov, V., Radostin, A.: Nonlinear Acoustic Waves in Micro-inhomogeneous Solids. Wiley (2015).  https://doi.org/10.1002/9781118698334.
  4. 4.
    Zarembo, L.K., Krasil’nikov, V.A., Shkol’nik, I.E.: Nonlinear acoustics in a problem of diagnosing the strength of solids. Strength Mater. 21(11), 1544–1551 (1989).  https://doi.org/10.1007/bf01529410 CrossRefGoogle Scholar
  5. 5.
    Van Den Abeele, K., De Visscher, J.: Damage assessment in reinforced concrete using spectral and temporal nonlinear vibration techniques. Cem. Concr. Res. 30(9), 1453–1464 (2000).  https://doi.org/10.1016/s0008-8846(00)00329-x CrossRefGoogle Scholar
  6. 6.
    Philippidis, T.P., Aggelis, D.G.: An acousto-ultrasonic approach for the determination of water-to-cement ratio in concrete. Cem. Concr. Res. 33, 525–538 (2003).  https://doi.org/10.1016/s0008-8846(02)00999-7 CrossRefGoogle Scholar
  7. 7.
    Warnemuende, K., Wu, H.-C.: Actively modulated acoustic nondestructive evaluation of concrete. Cem. Concr. Res. 34, 563–570 (2004).  https://doi.org/10.1016/j.cemconres.2003.09.008 CrossRefGoogle Scholar
  8. 8.
    Shkolnik, I.E.: Effect of nonlinear response of concrete on its elastic modulus and strength. Cem. Concr. Compos. 27(7), 747–757 (2005).  https://doi.org/10.1016/j.cemconcomp.2004.12.006 CrossRefGoogle Scholar
  9. 9.
    Chen, X.J., Kim, J.-Y., Kurtis, K.E., Qu, J., Shen, C.W., Jacobs, L.J.: Characterization of progressive microcracking in Portland cement mortar using nonlinear ultrasonics. NDT&E Int. 41, 112–118 (2008).  https://doi.org/10.1016/j.ndteint.2007.08.009 CrossRefGoogle Scholar
  10. 10.
    Shah, A.A., Ribakov, Y.: Non-destructive evaluation of concrete in damaged and undamaged states. Mater. Des. 30(9), 3504–3511 (2009).  https://doi.org/10.1016/j.matdes.2009.03.008 CrossRefGoogle Scholar
  11. 11.
    Payan, C., Garnier, V., Moysan, J.: Effect of water saturation and porosity on the nonlinear elastic response of concrete. Cem. Concr. Res. 40, 473–476 (2010).  https://doi.org/10.1016/j.cemconres.2009.10.021 CrossRefGoogle Scholar
  12. 12.
    Chen, J., Jayapalan, A.R., Kim, J.Y., Kurtis, K.E., Jacobs, L.J.: Rapid evaluation of alkali-silica reactivity of aggregates using a nonlinear resonance spectroscopy technique. Cem. Concr. Res. 40, 914–923 (2010).  https://doi.org/10.1016/j.cemconres.2010.01.003 CrossRefGoogle Scholar
  13. 13.
    Chen, J., Zhang, L.: Experimental study of effects of water–cement ratio and curing time on nonlinear resonance of concrete. Mater. Struct. 48(1–2), 423–433 (2015).  https://doi.org/10.1617/s11527-013-0193-3 CrossRefGoogle Scholar
  14. 14.
    Chen, J., Xu, Z., Yu, Y., Yao, Y.: Experimental characterization of granite damage using nonlinear ultrasonic techniques. NDT&E Int. 67, 10–16 (2014).  https://doi.org/10.1016/j.ndteint.2014.06.005 CrossRefGoogle Scholar
  15. 15.
    Haupert, S., Rivière, J., Anderson, B., Ohara, Y., Ulrich, T.J., Johnson, P.: Optimized dynamic acousto-elasticity applied to fatigue damage and stress corrosion cracking. J. Nondestruct. Eval. 33, 226–238 (2014).  https://doi.org/10.1007/s10921-014-0231-2 CrossRefGoogle Scholar
  16. 16.
    Riviere, J., Remillieux, M.C., Ohara, Y., Anderson, B.E., Haupert, S., Ulrich, T.J., Johnson, P.A.: Dynamic acousto-elasticity in a fatigue-cracked sample. J. Nondestruct. Eval. 33, 216–225 (2014).  https://doi.org/10.1007/s10921-014-0225-0 CrossRefGoogle Scholar
  17. 17.
    Reichel, W., Conrad, D.: Beton, B 1. Veb Varfag für Bauwesen, Berlin (1976)Google Scholar
  18. 18.
    Landau, L.D., Lifshitz, E.M.: Theory of Elasticity. Pergamon, New York (1986)zbMATHGoogle Scholar
  19. 19.
    Zarembo, L.K., Krasil’nikov, V.A.: Nonlinear phenomena in the propagation of elastic waves in solids. Sov. Phys. Uspekhi 13, 778–797 (1977).  https://doi.org/10.1070/pu1971v013n06abeh004281 CrossRefGoogle Scholar
  20. 20.
    Benson, R.W., Raelson, V.J.: Acoustoelasticity. Prod. Eng. 30, 56–59 (1959)Google Scholar
  21. 21.
    Toupin, R.A., Bernstein, B.: Sound waves in deformed perfectly elastic materials. Acoustoelastic effect. J. Acoust. Soc. Am. 33, 216–225 (1961).  https://doi.org/10.1121/1.1908623 MathSciNetCrossRefGoogle Scholar
  22. 22.
    Pecorari, C., Mendelsohn, D.A.: Forced nonlinear vibrations of a one-dimensional bar with arbitrary distributions of hysteretic damage. J. Nondestruct. Eval. 33, 239–251 (2014).  https://doi.org/10.1007/s10921-014-0228-x CrossRefGoogle Scholar
  23. 23.
    Rudenko, O.V., Sapozhnikov, O.A.: Self-action effects for wave beams containing shock fronts. Phys. Uspekhi 47(9), 907 (2004).  https://doi.org/10.1070/pu2004v047n09abeh001865 CrossRefGoogle Scholar
  24. 24.
    Nazarov, V.E., Kiyashko, S.B.: Acoustic waves in media with hysteretic nonlinearity and linear dispersion. Tech. Phys. 59, 311–317 (2014).  https://doi.org/10.1134/s1063784214030207 CrossRefGoogle Scholar
  25. 25.
    Nazarov, V.E., Kiyashko, S.B.: Modified Davidenkov hysteresis and the propagation of sawtooth waves in polycrystals with hysteretic loss saturation. Phys. Met. Metallogr. 117, 766–771 (2016).  https://doi.org/10.1134/s0031918x1608010x CrossRefGoogle Scholar
  26. 26.
    Nazarov, V.E., Radostin, A.V., Ostrovsky, L.A., Soustova, I.A.: Wave processes in media with hysteretic nonlinearity. Pt. 1. Acoust. Phys. 49, 385–395 (2003).  https://doi.org/10.1134/1.1574363 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Veniamin Nazarov
    • 1
    Email author
  • Andrey Kolpakov
    • 2
  • Andrey Radostin
    • 1
    • 3
  1. 1.Institute of Applied PhysicsRussian Academy of ScienceNizhniy NovgorodRussia
  2. 2.Lobachevsky State UniversityNizhniy NovgorodRussia
  3. 3.Department of Applied MathematicsNizhny Novgorod State Technical UniversityNizhniy NovgorodRussia

Personalised recommendations