Advertisement

Detection of Inner Wall Circumferential Cracks in the Special-Shaped Pipes Using Surface Waves

  • Peng Deng
  • Cunfu He
  • Yan LyuEmail author
  • Guorong Song
  • Jingpin Jiao
  • Bin Wu
Article

Abstract

This paper presents a detection method for the inner wall circumferential cracks in the special-shaped pipes with small diameter-depth ratio using surface waves by placing the transducer at the end face. The scattering characteristic of surface waves at the vertical edge that the maximum of transmission coefficient can be delivered only when the ratio of chamfer size to surface wavelength a/λ = 1, was obtained by finite element method (FEM) simulations and verified experimentally. Electromagnetic acoustic transducers (EMATs) with a center frequency of 1.5 MHz were used to generate and receive surface waves at the end face of the thick-walled pipe. In the pitch-catch mode, the propagation ability of the axial surface wave transmitted at the edge was tested and analyzed. Moreover, in pulse-echo mode, the circumferential grooves in the inner wall were efficiently detected by the surface wave EMAT placed at the end face of the pipe.

Keywords

Surface waves Inner wall cracks Vertical edge with chamfer Transmission coefficient 

Notes

Acknowledgements

The research is supported by the National Natural Science Foundation of China (Grant Nos. 51505013, 51235001, and 51575015). Also, our faithful appreciation goes to Oshane Thorpe for his helpful suggestions.

References

  1. 1.
    Hu, B., Zhu, H.W., Ding, K., Xu, F.L., Zhang, Y.J.: Numerical investigation of heat transfer characteristics for subsea Xmas tree assembly. J. Mech. Sci. Technol. 29(11), 4933–4942 (2015)CrossRefGoogle Scholar
  2. 2.
    Zhang, Q., Jiang, B., Huang, W.J., Cui, W., Liu, J.B.: Effect of wellhead tension on buckling load of tubular strings in vertical wells. J. Petrol. Sci. Eng. 164, 351–361 (2018)CrossRefGoogle Scholar
  3. 3.
    Ku, T.-W., Kim, L.-H., Kang, B.-S.: Multi-stage cold forging and experimental investigation for the outer race of constant velocity joints. Mater. Des. 49, 368–385 (2013)CrossRefGoogle Scholar
  4. 4.
    Park, K.S., VanTyne, C.J., Moon, Y.H.: Process analysis of multistage forging by using finite element method. J. Mater. Process. Technol. 187–188, 586–590 (2007)CrossRefGoogle Scholar
  5. 5.
    Hawryluk, M., Jakubik, J.: Analysis of forging defects for selected industrial die forging processes. Eng. Fail. Anal. 59, 396–409 (2016)CrossRefGoogle Scholar
  6. 6.
    Szelążek, J.: Ultrasonic evaluation of residual hoop stress in forged and cast railroads wheels—differences. J. Nondestruct. Eval. 34(1), 1–13 (2015)CrossRefGoogle Scholar
  7. 7.
    Kapoor, K., Krishna, K.S., Bakshu, S.A.: On parameters affecting the sensitivity of ultrasonic testing of tubes: experimental and simulation. J. Nondestruct. Eval. 35(4), 56–65 (2016)CrossRefGoogle Scholar
  8. 8.
    Kasai, N., Takada, A., Fukuoka, K., Aiyama, H., Hashimoto, M.: Quantitative investigation of a standard test shim for magnetic particle testing. NDT&E Int. 44(5), 421–426 (2011)CrossRefGoogle Scholar
  9. 9.
    Xu, G.R., Guan, X.S., Qiao, Y.L., Gao, Y.: Analysis and innovation for penetrant testing for airplane parts. Procedia Eng. 99, 1438–1442 (2015)CrossRefGoogle Scholar
  10. 10.
    Fan, Y., Dixon, S., Edwards, R.S., Jian, X.: Ultrasonic surface wave propagation and interaction with surface defects on rail track head. NDT&E Int. 40(6), 471–477 (2007)CrossRefGoogle Scholar
  11. 11.
    Cook, D.A., Berthelot, Y.H.: Detection of small surface-breaking fatigue cracks in steel using scattering of Rayleigh waves. NDT&E Int. 34(7), 483–492 (2001)CrossRefGoogle Scholar
  12. 12.
    Xiang, D., Qin, Y.X., Li, F.: Surface wave acoustic microscopy for rapid non-destructive evaluation of silicon nitride balls. J. Nondestruct. Eval. 30(4), 273–281 (2011)CrossRefGoogle Scholar
  13. 13.
    Zachary, L.W.: Quantitative use of Rayleigh waves to locate and size subsurface holes. J. Nondestruct. Eval. 3(1), 55–63 (1982)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Dutton, B., Clough, A.R., Edwards, R.S.: Near field enhancements from angled surface defects; a comparison of scanning laser source and scanning laser detection techniques. J. Nondestruct. Eval. 30(2), 64–70 (2011)CrossRefGoogle Scholar
  15. 15.
    In, C.-W., Schempp, F., Kim, J.-Y., Jacobs, L.J.: A fully non-contact, air-coupled ultrasonic measurement of surface breaking cracks in concrete. J. Nondestruct. Eval. 34(1), 272–278 (2015)CrossRefGoogle Scholar
  16. 16.
    Bruttomesso, D.A., Jacobs, L.J., Fiedler, C.: Experimental and numerical investigation of the interaction of Rayleigh surface waves with corners. J. Nondestruct. Eval. 16(1), 21–30 (1997)CrossRefGoogle Scholar
  17. 17.
    Gautesen, A.K.: Scattering of a Rayleigh wave by an elastic wedge whose angle is less than 180°. Wave Motion 36(4), 417–424 (2002)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Saffari, N., Bond, L.J.: Body to Rayleigh wave mode-conversion at steps and slots. J. Nondestruct. Eval. 6(1), 1–22 (1987)CrossRefGoogle Scholar
  19. 19.
    Darinskii, A.N., Weihnacht, M., Schmidt, H.: Surface acoustic wave scattering from steps, grooves, and strips on piezoelectric substrates. IEEE Trans. Ultrason. Ferr. 57(9), 2042–2050 (2010)CrossRefGoogle Scholar
  20. 20.
    Darinskii, A.N., Weihnacht, M., Schmidt, H.: Rayleigh wave scattering from a vertical edge of isotropic substrates. Ultrasonics 54(7), 1999–2005 (2014)CrossRefGoogle Scholar
  21. 21.
    Budaev, B.V., Bogy, D.B.: Rayleigh wave scattering by a wedge. Wave Motion 22(3), 239–257 (1995)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Murayama, R., Ayaka, K.: Evaluation of fatigue specimens using EMATs for nonlinear ultrasonic wave detection. J. Nondestruct. Eval. 26(2–4), 115–122 (2007)CrossRefGoogle Scholar
  23. 23.
    Xie, Y.D., Liu, Z.H., Yin, L.Y., Wu, J.D., Deng, P., Yin, W.L.: Directivity analysis of meander-line-coil EMATs with a wholly analytical method. Ultrasonics 73, 262–270 (2016)CrossRefGoogle Scholar
  24. 24.
    He, C.F., Deng, P., Lu, Y., Liu, X.C., Liu, Z.H., Jiao, J.P., Wu, B.: Estimation of surface crack depth using Rayleigh waves by electromagnetic acoustic transducers. Int. J. Acoust. Vib. 22(4), 541–548 (2017)Google Scholar
  25. 25.
    Zerwer, A., Polak, M.A., Santamarina, J.C.: Rayleigh wave propagation for the detection of near surface discontinuities: finite element modeling. J. Nondestruct. Eval. 22(2), 39–52 (2003)CrossRefGoogle Scholar
  26. 26.
    Masserey, B., Mazza, E.: Ultrasonic sizing of short surface cracks. Ultrasonics 46(3), 195–204 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Mechanical Engineering and Applied Electronics TechnologyBeijing University of TechnologyBeijingChina

Personalised recommendations