Advertisement

Material Decomposition in X-ray Spectral CT Using Multiple Constraints in Image Domain

  • Bingqing Xie
  • Ting Su
  • Valérie Kaftandjian
  • Pei Niu
  • Feng YangEmail author
  • Marc Robini
  • Yuemin ZhuEmail author
  • Philippe Duvauchelle
Article

Abstract

X-ray spectral CT appears as a new promising imaging modality for the quantitative measurement of materials in an object, compared to conventional energy-integrating CT or dual energy CT. We consider material decomposition in spectral CT as an overcomplete ill-conditioned inverse problem. To solve the problem, we make full use of multi-dimensional nature and high correlation of multi-energy data and spatially neighboring pixels in spectral CT. Meanwhile, we also exploit the fact that material mass density has limited value. The material decomposition is then achieved by using bounded mass density, local joint sparsity and structural low-rank (DSR) in image domain. The results on numerical phantom demonstrate that the proposed DSR method leads to more accurate decomposition than usual pseudo-inverse method with singular value decomposition (SVD) and current popular sparse regularization method with ℓ1-norm constraint.

Keywords

X-ray spectral CT Material decomposition Sparse representation Low-rank representation 

Notes

Acknowledgements

This research is partly supported by the National Key R&D Plan of China under Grant No. 2017YFB1400100, the National Basic Research Program of China under Grant No. 61671049 and the Program PHC-Cai Yuanpei 2016 No. 36702XD.

References

  1. 1.
    Faby, S., Kuchenbecker, S., Sawall, S., Simons, D., Schlemmer, H.-P., Lell, M., Kachelrieß, M.: Performance of today’s dual energy CT and future multi energy CT in virtual non-contrast imaging and in iodine quantification: a simulation study. Med. Phys. 42, 4349–4366 (2015).  https://doi.org/10.1118/1.4922654 CrossRefGoogle Scholar
  2. 2.
    Schlomka, J.P., Roessl, E., Dorscheid, R., Dill, S., Martens, G., Istel, T., Bäumer, C., Herrmann, C., Steadman, R., Zeitler, G., Livne, A., Proksa, R.: Experimental feasibility of multi-energy photon-counting K-edge imaging in pre-clinical computed tomography. Phys. Med. Biol. 53, 4031–4047 (2008).  https://doi.org/10.1088/0031-9155/53/15/002 CrossRefGoogle Scholar
  3. 3.
    Roessl, E., Proksa, R.: K-edge imaging in x-ray computed tomography using multi-bin photon counting detectors. Phys. Med. Biol. 52, 4679–4696 (2007).  https://doi.org/10.1088/0031-9155/52/15/020 CrossRefGoogle Scholar
  4. 4.
    Maaß, N., Sawall, S., Knaup, M., Kachelrieß, M.: Empirical multiple energy calibration (EMEC) for material-selective CT. IEEE Nucl. Sci. Symp. Conf. Rec. (2012).  https://doi.org/10.1109/nssmic.2011.6153810 CrossRefGoogle Scholar
  5. 5.
    Foygel Barber, R., Sidky, E.Y., Gilat Schmidt, T., Pan, X.: An algorithm for constrained one-step inversion of spectral CT data. Phys. Med. Biol. 61, 3784–3818 (2016).  https://doi.org/10.1088/0031-9155/61/10/3784 CrossRefGoogle Scholar
  6. 6.
    Faby, S., Kuchenbecker, S., Simons, D., Schlemmer, H.-P., Lell, M., Kachelrieß, M.: CT calibration and dose minimization in image-based material decomposition with energy-selective detectors. Proc. SPIE Med. Imaging. 9033, 903318 (2014).  https://doi.org/10.1117/12.2042877 CrossRefGoogle Scholar
  7. 7.
    Candes, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52, 489–509 (2006).  https://doi.org/10.1109/TIT.2005.862083 MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52, 1289–1306 (2006).  https://doi.org/10.1109/TIT.2006.871582 MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Clark, D.P., Badea, C.T.: Spectral diffusion: an algorithm for robust material decomposition of spectral CT data. Phys. Med. Biol. 59, 6445–6466 (2014).  https://doi.org/10.1088/0031-9155/59/21/6445 CrossRefGoogle Scholar
  10. 10.
    Gao, H., Yu, H., Osher, S., Wang, G.: Multi-energy CT based on a prior rank, intensity and sparsity model (PRISM). Inverse Probl. (2011).  https://doi.org/10.1088/0266-5611/27/11/115012 MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Nie, F., Huang, H., Cai, X., Ding, C.H.: Efficient and robust feature selection via joint ℓ2, 1-norms minimization. In: Lafferty, J.D., Williams, C.K.I., Shawe-Taylor, J., Zemel, R.S., Culotta, A. (eds.) Advances in Neural Information Processing Systems, pp. 1813–1821. Curran Associates, Inc., Red Hook (2010)Google Scholar
  12. 12.
    Canes, E.J., Li, X., Ma, Y., Wright, J.: Robust principal component analysis? J. ACM 58, 11 (2009)MathSciNetGoogle Scholar
  13. 13.
    Holt, K.M.: Total nuclear variation and Jacobian extensions of total variation for vector fields. IEEE Trans. Image Process. 23, 3975–3989 (2014).  https://doi.org/10.1109/TIP.2014.2332397 MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3, 1–122 (2010).  https://doi.org/10.1561/2200000016 CrossRefzbMATHGoogle Scholar
  15. 15.
    Kowalski, M.: Sparse regression using mixed norms. Appl. Comput. Harmon. Anal. 27, 303–324 (2009).  https://doi.org/10.1016/j.acha.2009.05.006 MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Rao, B.D., Kreutz-Delgado, K.: An affine scaling methodology for best basis selection. IEEE Trans. Signal Process. 47, 187–200 (1999).  https://doi.org/10.1109/78.738251 MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Cai, J.-F., Candès, E.J., Shen, Z.: A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 20, 1956–1982 (2010).  https://doi.org/10.1137/080738970 MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Duvauchelle, P., Freud, N., Kaftandjian, V., Babot, D.: Computer code to simulate X-ray imaging techniques. Nucl. Instrum. Methods Phys. Res. B 170, 245–258 (2000).  https://doi.org/10.1016/s0168-583x(00)00185-3 CrossRefGoogle Scholar
  19. 19.
    Saloman, E.B., Hubbell, J.H.: X-ray attenuation coefficients (total cross sections): comparison of the experimental data base with the recommended values of Henke and the theoretical values of Scofield for energies between 0.1–100 keV, https://www.osti.gov/scitech/biblio/6965777, (1986)
  20. 20.
    Vacca, R.: Regression Diagnostics—Identifying Influential Data and Sources of Collinearity. Wiley, New Jersey (1981)Google Scholar
  21. 21.
    Ding, Q., Niu, T., Zhang, X., Long, Y.: Image-domain multi-material decomposition for dual-energy CT based on prior information of material images. Med. Phys. 45, 3614–3626 (2018).  https://doi.org/10.1002/mp.13001 CrossRefGoogle Scholar
  22. 22.
    Zhang, Y., Xi, Y., Yang, Q., Cong, W.: Spectral CT reconstruction with image sparsity and spectral mean 2, 510–523 (2016).  https://doi.org/10.1109/TCI.2016.2609414 CrossRefGoogle Scholar
  23. 23.
    Wang, S.L., Liao, L.Z.: Decomposition method with a variable parameter for a class of monotone variational inequality problems. J. Optim. Theory Appl. 109, 415–429 (2001).  https://doi.org/10.1023/A:1017522623963 MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Bingqing Xie
    • 1
  • Ting Su
    • 2
  • Valérie Kaftandjian
    • 2
  • Pei Niu
    • 1
  • Feng Yang
    • 3
    Email author
  • Marc Robini
    • 1
  • Yuemin Zhu
    • 1
    Email author
  • Philippe Duvauchelle
    • 2
  1. 1.Univ Lyon, INSA Lyon, CNRS, Inserm, CREATIS UMR 5220, U1206LyonFrance
  2. 2.Univ Lyon, INSA Lyon, Laboratoire Vibrations AcoustiqueVilleurbanneFrance
  3. 3.School of Computer and Information TechnologyBeijing Jiaotong UniversityBeijingChina

Personalised recommendations