Advertisement

Preliminary Experimentation of Fast Neutron Radiography with D-T Neutron Generator at BARC

  • S. BishnoiEmail author
  • P. S. Sarkar
  • R. G. Thomas
  • T. Patel
  • M. Pal
  • P. S. Adhikari
  • A. Sinha
  • A. Saxena
  • S. C. Gadkari
Article
  • 66 Downloads

Abstract

An experimental study on fast neutron radiography (FNR) has been carried out using a laboratory based D-T neutron generator facility at Bhabha Atomic Research Centre (BARC) and initial results are presented. The aim was to develop an FNR system with a moderate intensity neutron source for imaging of specimen containing mixed low-Z and high-Z materials. The experimental set-up consists of a D-T neutron generator, collimator and an EMCCD camera based imaging system. Experiments were carried out with the neutron generator having a source strength of about 2 × 109 n/s and source spot size of 20 mm. To obtain optimum image quality with such a moderate neutron yield, a collimator has been designed having an inlet aperture of 10 mm and an L/D of 43. The imaging system was kept at an optimum distance from the collimator and various test samples of materials ranging from low Z to high Z were imaged. Thick samples in step wedge form, hole features in step wedge of polyethylene, mild steel and lead were imaged and analysed. Also a test sample of a low Z material (HDPE) with a hole placed behind a thick Pb was imaged to study the effect of thickness of high Z material on image quality with fast neutrons. The initial results emphasizes that a moderate yield D-T neutron generator based fast neutron radiography system with EMCCD camera could be deployed for field applications yielding moderate image quality to obtain first hand information of the investigated samples.

Keywords

D-T neutron generator Neutron radiography Imaging of low Z material 

References

  1. 1.
    Bilheux, H.Z. (ed.): Neutron Imaging and Applications: A Reference for the Imaging Community. Springer, New York (2009)Google Scholar
  2. 2.
    Lehmann, E., et al.: Recent applications of neutron imaging methods. Phys. Proc. 88, 5–12 (2017)CrossRefGoogle Scholar
  3. 3.
    Bucherl, Thomas, et al.: Radiography and tomography with fast neutrons at the FRM-II—a status report. Appl. Radiat. Isot. 61, 537–540 (2004)CrossRefGoogle Scholar
  4. 4.
    Zboray, R., et al.: Fast neutron radiography and tomography at a 10 MW research reactor beamline. Appl. Radiat. Isot. 119, 43–50 (2017)CrossRefGoogle Scholar
  5. 5.
  6. 6.
    Ikeda, Y., et al.: Fast neutron radiography tests at the YAYOI-reactor, University of Tokyo. Nucl. Instrum. Methods Phys. Res. A 276, 183–190 (1989)CrossRefGoogle Scholar
  7. 7.
    Tozser S. Full-scale reconstruction and upgrade of the Budapest research reactor. IAEA-TECDOC1625, International Atomic Energy Agency (IAEA), (2009)Google Scholar
  8. 8.
    Hall J. B. et al.: High Energy Neutron Imaging Development at LLNL, UCRL-CONF-230835, (2007)Google Scholar
  9. 9.
    Raas, W. L. et al.: Neutron resonance radiography for explosives detection: technical challenges, UCRL-CONF-217017, IEEE Nuclear Science Symposium and Medical Imaging Conference (2005)Google Scholar
  10. 10.
    Hausladen, P.A., et al.: Portable fast-neutron radiography with the nuclear materials identification system for fissile material transfers. Nucl. Instrum. Methods Phys. Res. B 261, 387–390 (2007)CrossRefGoogle Scholar
  11. 11.
    Takenaka, N., et al.: Application of fast neutron radiography to three-dimensional visualization of steady two-phase flow in a rod bundle. Nucl. Inst. Methods A 424, 73–76 (1999)CrossRefGoogle Scholar
  12. 12.
    Zboray, Robert, et al.: Development of a fast neutron imaging system for investigating two-phase flows in nuclear thermal–hydraulic phenomena: a status report. Nucl. Eng. Des. 273, 10–23 (2014)CrossRefGoogle Scholar
  13. 13.
    Popov, V., Degtiarenko, P., Musatov, I.: New detector for use in fast neutron radiography. JINST 6, C01029 (2011).  https://doi.org/10.1088/1748-0221/6/01/c01029 CrossRefGoogle Scholar
  14. 14.
    Mikerov, V., et al.: Fast neutron fields imaging with a CCD-based luminescent detector. Nucl. Instrum. Methods Phys. Res. A 424, 48–52 (1999)CrossRefGoogle Scholar
  15. 15.
    Bogolubova, E., et al.: CCD detectors for fast neutron radiography and tomography with a cone beam. Nucl. Instrum. Methods Phys. Res. A 542, 187–191 (2005)CrossRefGoogle Scholar
  16. 16.
    Adams, Robert, et al.: A novel fast-neutron tomography system based on a plastic scintillator array and a compact DD neutron generator. Appl. Radiat. Isot. 107, 1–7 (2016)CrossRefGoogle Scholar
  17. 17.
    Lehmann, E., et al.: Neutron radiography with 14 MeV neutrons from a neutron generator. IEEE Trans. Nucl. Sci. 52(1), 389–393 (2005)CrossRefGoogle Scholar
  18. 18.
    Bergaoui, K., et al.: Design, testing and optimization of a neutron radiography system based on a Deuterium-Deuterium (D–D) neutron generator. J. Radioanal. Nucl. Chem. 299, 41–51 (2014).  https://doi.org/10.1007/s10967-013-2729-y CrossRefGoogle Scholar
  19. 19.
    Patel, T., et al.: Development of low energy deuteron accelerator based DC and pulsed neutron generators. BARC News Letter, Special Issue 146–149 Oct (2013)Google Scholar
  20. 20.
    Bishnoi, S., et al.: Source characterization of Purnima Neutron Generator (PNG). Proc. DAE Symp. Nucl. Phys. 56, 1102 (2011)Google Scholar
  21. 21.
    Sabo-Napadensky, I., et al.: Research and development of a dedicated collimator for 14.2 MeV fast neutrons for imaging using a D-T generator. JINST 7, C06005 (2012)CrossRefGoogle Scholar
  22. 22.
    Fantidis, J.G., et al.: Optimization study of a transportable neutron radiography unit based on a compact neutron generator. Nucl. Instrum. Methods Phy. Res. A 618, 331–335 (2010)CrossRefGoogle Scholar
  23. 23.
    Agostinelli, S., et al.: Geant4 simulation toolkit. Nucl. Instrum. Methods. Phys. Res. Sect. A 506, 250–303 (2003)CrossRefGoogle Scholar
  24. 24.
    http://geant4.cern.ch/. Accessed Oct 2015
  25. 25.
    Knoll, G. F.: Radiation Detection and Measurement, 3rd edn. John Wiley & Sons, Inc., New York (1999)Google Scholar
  26. 26.
    https://www.nndc.bnl.gov. Accessed June 2017
  27. 27.
  28. 28.
    https://andor.com. Accessed May 2006
  29. 29.
    Ferreira, T., Rasband, W. S.: ImageJ User Guide-FIJI 1.46 (2012)Google Scholar
  30. 30.
    http://imagej.nih.gov/ij/. Accessed Jan 2015
  31. 31.
    Wellington, T.A., et al.: Recent fast neutron imaging measurements with the fieldable nuclear materials identification system. Phys. Proc. 66, 432–438 (2015)CrossRefGoogle Scholar
  32. 32.
    Hartmana, Jessica, et al.: Computational study of integrated neutron/photon imaging for illicit material detection. Phys. Proc. 66, 85–94 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • S. Bishnoi
    • 1
    • 3
    Email author
  • P. S. Sarkar
    • 1
    • 3
  • R. G. Thomas
    • 2
    • 3
  • T. Patel
    • 1
  • M. Pal
    • 1
  • P. S. Adhikari
    • 1
  • A. Sinha
    • 3
  • A. Saxena
    • 2
    • 3
  • S. C. Gadkari
    • 1
    • 3
  1. 1.Technical Physics DivisionBhabha Atomic Research CenterMumbaiIndia
  2. 2.Nuclear Physics DivisionBhabha Atomic Research CenterMumbaiIndia
  3. 3.Homi Bhabha National InstituteMumbaiIndia

Personalised recommendations