Fourier Spectrum Pulse-Echo for Acoustic Characterization

  • Barnana PalEmail author


Ultrasonic wave attenuation (α) measurement by pulse-echo method exhibits pronounced dependence on experimental conditions. It is shown to be an inherent characteristic of the method itself. Estimation of α from the component wave amplitudes in the frequency scale gives more accurate and consistent value. This technique, viz., the Fourier spectrum pulse-echo (FSPE) is demonstrated to determine the ultrasonic velocity (v) and attenuation constant (α) in ultrapure de-ionized water at room temperature (25 °C) at 1 and 2 MHz wave frequency.


Fourier transform Pulse echo method Ultrasonic propagation constants 



The author is grateful to Sankari Chakraborty and Papia Mondal for their assistance and technical help in conducting the experiment.


  1. 1.
    Bell, R.J.: Introductory Fourier Transform Spectroscopy. Academic Press, New York (1972)Google Scholar
  2. 2.
    Chase, D.B., Rabolt, J.F. (eds.): Fourier Transform Raman Spectroscopy: From Concept to Experiment. Acadenic Press, San Diego/New York/Boston/London/Sydney/Tokyo/Toronto (1994)Google Scholar
  3. 3.
    Griffiths, P.R., de Haseth, J.A.: Fourier Transform Infrared Spectrometry. Wiley, New York (1986)Google Scholar
  4. 4.
    Farrar, T., Becker, E.: Pulsed and Fourier Transform NMR. Academic Press, Cambridge (2012)Google Scholar
  5. 5.
    Pal, Barnana: Pulse-echo method cannot measure wave attenuation accurately. Ultrasonics 61, 6–9 (2015)CrossRefGoogle Scholar
  6. 6.
    Barnes, C., Evans, J.A., Lewis, J.: A broad-band single pulse technique for ultrasound absorption studies of aqueous solutions in the frequency range 200 kHz–1 MHz. Ultrasonics 24, 267 (1986)CrossRefGoogle Scholar
  7. 7.
    Zhao, B., Basir, O.A., Mittal, G.S.: Estimation of ultrasound attenuation and dispersion using short time Fourier transform. Ultrasonics 43, 375–381 (2005)CrossRefGoogle Scholar
  8. 8.
    McClements, D.J., Fairley, P.: Frequency scanning ultrasonic pulse-echo reflectometer. Ultrasonics 30(6), 403–405 (1992)CrossRefGoogle Scholar
  9. 9.
    Masuhara, N., Watson, B.C., Meisel, M.W.: Pulsed Fourier-transform ultrasonic spectroscopy for ultralow temperature applications. J. Low Temp. Phys. 121, 815–820 (2000). CrossRefGoogle Scholar
  10. 10.
    Tong, J., Povey, M.J.W.: Pulse echo comparison method with FSUPER to measure velocity dispersion in n-tetradecane in water emulsions. Ultrasonics 40, 37–41 (2002)CrossRefGoogle Scholar
  11. 11.
    He, P., Zheng, J.: Acoustic dispersion and attenuation measurement using both transmitted and reflected pulses. Ultrasonics 39, 27–32 (2001)CrossRefGoogle Scholar
  12. 12.
    Tant, K.M.M., Mulholland, A.J., Langer, M., Gachagan, A.: A fractional Fourier transform analysis of scattering of ultrasonic waves. Proc. R. Soc. A. 471, 20140958 (2015). MathSciNetCrossRefGoogle Scholar
  13. 13.
    Pal, Barnana: Fourier Transform ultrasound spectroscopy for the determination of wave propagation parameters. Ultrasonics 73, 140–143 (2017)CrossRefGoogle Scholar
  14. 14.
    Martinez, R., Leija, L., Vera, A.: Ultrasonic attenuation in pure water: comparison between through-transmission and pulse-echo techniques, In: Proceedings of the 2010 Pan American Health Care Exchanges-PAHCE, 15–19 March 2010. IEEE, Lima, Peru, 2010, pp. 81–84.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Condensed Matter Physics DivisionSaha Institute of Nuclear PhysicsBidhannagarIndia

Personalised recommendations