Influence of the Microstructure on Magnetic Stray Fields of Low-Carbon Steel Welds

  • Robert StegemannEmail author
  • Sandra Cabeza
  • Matthias Pelkner
  • Viktor Lyamkin
  • Andreas Pittner
  • Daniel Werner
  • Robert Wimpory
  • Mirko Boin
  • Marc Kreutzbruck
  • Giovanni Bruno


This study examines the relationship between the magnetic mesostructure with the microstructure of low carbon steel tungsten inert gas welds. Optical microscopy revealed variation in the microstructure of the parent material, in the heat affected and fusion zones, correlating with distinctive changes in the local magnetic stray fields measured with high spatial resolution giant magneto resistance sensors. In the vicinity of the heat affected zone high residual stresses were found using neutron diffraction. Notably, the gradients of von Mises stress and triaxial magnetic stray field modulus follow the same tendency transverse to the weld. In contrast, micro-X-ray fluorescence characterization indicated that local changes in element composition had no independent effect on magnetic stray fields.


TIG-welding GMR sensors Magnetic stray field Neutron diffraction Residual stress Microstructure Low carbon steel 



The authors thank N. Sonntag and B. Skrotzki for their support to our work by providing information, references and discussions. Special thanks to H. Sturm for his fruitful and cogent comments. The experimental work was supported by T. Michael, T. Mishurova, M. Weise, A. Böcker, A. Zunkel, J. Biermann, E. Köppe, L. Stempin and M. Kuffel.


  1. 1.
    Jiles, D.C.: Microstructure and stress dependence of the magnetic properties of steels. In: Review of Progress in Quantitative Nondestructive Evaluation, vol 9, pp. 1821–1827, Springer, Boston (1990). CrossRefGoogle Scholar
  2. 2.
    Liu, T., Kikuchi, H., Ara, K., Kamad, Y., Takahashi, S.: Magnetomechanical effect of low carbon steel studied by two kinds of magnetic minor hysteresis loops. NDT E Int. 39(5), 408–413 (2006). CrossRefGoogle Scholar
  3. 3.
    Seeger, A., Kronmüller, H., Rieger, H., Träuble, H.: Effect of lattice defects on the magnetization curve of ferromagnets. J. Appl. Phys 35(1964), 740–748 (1964). CrossRefGoogle Scholar
  4. 4.
    Bozorth, R.M.: Ferromagnetism. Wiley-IEEE Press, Hoboken (2003)Google Scholar
  5. 5.
    Cullity, B.D.: Fundamentals of magnetostriction. JOM 23(1), 35–41 (1971). CrossRefGoogle Scholar
  6. 6.
    Becker, R.: Zur Theorie der Magnetisierungskurve. Zeitschrift für Phys. 62(3–4), 253–269 (1930). CrossRefGoogle Scholar
  7. 7.
    Joule, J.: XVII. On the effects of magnetism upon the dimensions of iron and steel bars. Philos. Mag. Ser. 3 30(199), 76–87 (1847). CrossRefGoogle Scholar
  8. 8.
    Villari, E.: Ueber die Aenderungen des magnetischen Moments, welche der Zug und das Hindurchleiten eines galvanischen Stroms in einem Stabe von Stahl oder Eisen hervorbringen. Ann. Phys. Chem. 202(9), 87–122 (1865). CrossRefGoogle Scholar
  9. 9.
    Jiles, D.C.: Theory of the magnetomechanical effect. J. Phys. D Appl. Phys. 28(8), 1537–1546 (1995). CrossRefGoogle Scholar
  10. 10.
    Polanschütz, W.: Inverse magnetostrictive effect and electromagnetic non-destructive testing methods. NDT Int. 19(4), 249–258 (1986). CrossRefGoogle Scholar
  11. 11.
    Yamasaki, T., Yamamoto, S., Hirao, M.: Effect of applied stresses on magnetostriction of low carbon steel. NDT E Int. 29(5), 263–268 (1996). CrossRefGoogle Scholar
  12. 12.
    Dorsey, H.G.: Magnetostriction in iron-carbon alloys. Phys. Rev. (Ser. I) 30(6), 698–719 (1910). CrossRefGoogle Scholar
  13. 13.
    Jiles, D.C.: The effect of compressive plastic deformation on the magnetic properties of AISI 4130 steels with various microstructures. J. Phys. D Appl. Phys. 21(7), 1196–1204 (1988). CrossRefGoogle Scholar
  14. 14.
    Bozorth, R.M., Williams, H.J.: Effect of small stresses on magnetic properties. Rev. Mod. Phys. (1945). CrossRefGoogle Scholar
  15. 15.
    Schneider, C.S.: Cooperative anistropic theory of ferromagnetic hysteresis. In: Caruta, B.M. (ed.) Trends in Materials Science Research, pp. 1–48. Nova Science Publishers, New York (2006). chap 1Google Scholar
  16. 16.
    Li, L., Jiles, D.C.: Modeling of the magnetomechanical effect: application of the Rayleigh law to the stress domain. J. Appl. Phys. 93(10), 8480–8482 (2003). CrossRefGoogle Scholar
  17. 17.
    Hubert, A., Schäfer, R.: Magnetic Domains, 3rd edn. Springer, Berlin (1998). CrossRefGoogle Scholar
  18. 18.
    Cullity, B.D., Graham, C.D.: Introduction to Magnetic Materials, 2nd edn. Wiley-IEEE Press, Hoboken, NJ (2009)Google Scholar
  19. 19.
    Bulte, D.P., Langman, R.A.: Origins of the magnetomechanical effect. J. Magn. Magn. Mater. 251(2), 229–243 (2002). CrossRefGoogle Scholar
  20. 20.
    Coey, J.M.D.: Magnetism and Magnetic Materials. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  21. 21.
    Sablik, M.J.: Modeling the effects of biaxial stress on magnetic properties of steels with application to biaxial stress NDE. Nondestruct. Test. Eval. 12(2), 87–102 (1995). CrossRefGoogle Scholar
  22. 22.
    Schneider, C.S., Cannell, P.Y., Watts, K.T.: Magnetoelasticity for large stresses. IEEE Trans. Magn. 28(5), 2626–2631 (1992). CrossRefGoogle Scholar
  23. 23.
    Spano, M.L., Hathaway, K.B., Savage, H.T.: Magnetostriction and magnetic anisotropy of field annealed Metglas* 2605 alloys via dc M-H loop measurements under stress. J. Appl. Phys. 53(3), 2667–2669 (1982). CrossRefGoogle Scholar
  24. 24.
    Langman, R.: Measurement of the mechanical stress in mild steel by means of rotation of magnetic field strength—part 2: biaxial stress. NDT Int. 15(2), 91–97 (1982). CrossRefGoogle Scholar
  25. 25.
    Langman, R.: Magnetic properties of mild steel under conditions of biaxial stress. IEEE Trans. Magn. 26(4), 1246–1251 (1990). CrossRefGoogle Scholar
  26. 26.
    Buttle, D.J., Dalzell, W., Scruby, C.B., Langman, R.A.: Comparison of three magnetic techniques for biaxial stress measurement. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in Quantitative Nondestructive Evaluation, pp. 1879–1885. Springer, Boston, MA (1990). CrossRefGoogle Scholar
  27. 27.
    Schneider, C.S., Richardson, J.M.: Biaxial magnetoelasticity in steels. J. Appl. Phys. 53(11), 8136–8138 (1982). CrossRefGoogle Scholar
  28. 28.
    Sablik, M.J., Riley, L.A., Burkhardt, G.L., Kwun, H., Cannell, P.Y., Watts, K.T., Langman, R.A.: Micromagnetic model for biaxial stress effects on magnetic properties. J. Magn. Magn. Mater. 132(1–3), 131–148 (1994). CrossRefGoogle Scholar
  29. 29.
    von Mises, R.: Mechanik der festen Körper im plastisch-deformablen Zustand. Nachrichten von der Gesellschaft der Wissenschaften zu Göttigen, Math Klasse, pp. 582–592 (1913)Google Scholar
  30. 30.
    Craik, D.J., Wood, M.J.: Magnetization changes induced by stress in a constant applied field. J. Phys. D Appl. Phys. 3(7), 1009–1016 (1970). CrossRefGoogle Scholar
  31. 31.
    Makar, J.M., Tanner, B.K.: Effect of plastic deformation and residual stress on the permeability and magnetostriction of steels. J. Magn. Magn. Mater. 222, 291–304 (2000). CrossRefGoogle Scholar
  32. 32.
    Schneider, C.S.: Effect of stress on the shape of ferromagnetic hysteresis loops. J. Appl. Phys. 97, 10E503 (2005). CrossRefGoogle Scholar
  33. 33.
    Becker, R.: Elastische Spannungen und magnetische Eigenschaften. Phys. Zeitschrift 33(23), 905–913 (1932)zbMATHGoogle Scholar
  34. 34.
    Kersten, M.: Zur magnetischen Analyse der inneren Spannungen. II. Zeitschrift für Phys. 82(11–12), 723–728 (1933). CrossRefGoogle Scholar
  35. 35.
    Kersten, M.: Zur magnetischen Analyse der inneren Spannungen. Zeitschrift für Phys. 76(7–8), 505–512 (1932). CrossRefGoogle Scholar
  36. 36.
    Perevertov, O., Schäfer, R.: Influence of applied compressive stress on the hysteresis curves and magnetic domain structure of grain-oriented transverse Fe-3Si steel. J. Phys. D Appl. Phys. 45(13), 135001 (2012). CrossRefGoogle Scholar
  37. 37.
    Perevertov, O., Schäfer, R.: Influence of applied tensile stress on the hysteresis curve and magnetic domain structure of grain-oriented Fe-3%Si steel. J. Phys. D Appl. Phys. 47(18), 185001 (2014). CrossRefGoogle Scholar
  38. 38.
    Perevertov, O.: Influence of the applied elastic tensile and compressive stress on the hysteresis curves of Fe-3%Si non-oriented steel. J. Magn. Magn. Mater. 428, 223–228 (2017). CrossRefGoogle Scholar
  39. 39.
    Weman, K.: Welding Processes Handbook, 2nd edn. Woodhead Publishing Limited, Cambridge (2011)CrossRefGoogle Scholar
  40. 40.
    Theiner, W.A., Altpeter, I.: Determination of residual stresses using micromagnetic parameters. In: Höller, P. (ed.) New Procedures in Nondestructive Testing, pp. 575–585. Springer, Berlin (1983). CrossRefGoogle Scholar
  41. 41.
    ISO/TS 21432:2005 (2007) Non-destructive testing—standard test method for determining residual stresses by neutron diffractionGoogle Scholar
  42. 42.
    Lorentzen, T., Hutchings, M., Withers, P., Holden, T.: Introduction to the Characterization of Residual Stress by Neutron Diffraction. CRC Press, Boca Raton (2005). CrossRefGoogle Scholar
  43. 43.
    Stegemann, R., Cabeza, S., Lyamkin, V., Bruno, G., Pittner, A., Wimpory, R., Boin, M., Kreutzbruck, M.: Residual stress characterization of steel TIG welds by neutron diffraction and by residual magnetic stray field mappings. J. Magn. Magn. Mater. 426(15), 580–587 (2017). CrossRefGoogle Scholar
  44. 44.
    DIN EN ISO 643:2012: Stahl- Mikrophotographische Bestimmung der erkennbaren Korngröße (2012)Google Scholar
  45. 45.
    DIN 50159-1: Metallische Werkstoffe - Härteprüfung nach dem UCI-Verfahren (2008)Google Scholar
  46. 46.
    Helmholtz-Zentrum Berlin für Materialien und Energie: E3: Residual stress neutron diffractometer at BER II. J. Large-Scale Res. Facil. (2016).
  47. 47.
    Hughes, D.J., Hattingh, M.N.J.D.G., Webster, P.J.: The use of combs for evaluation of strain-free references for residual strain measurements by neutron and synchrotron X-ray diffraction. J. Neutron Res. 11(December), 289–293 (2003). CrossRefGoogle Scholar
  48. 48.
    Krawitz, A.D., Winholtz, R.A.: Use of position-dependent stress-free standards for diffraction stress measurements. Mater. Sci. Eng. A 185(1–2), 123–130 (1994). CrossRefGoogle Scholar
  49. 49.
    Behnken, H., Hauk, V.: Berechnung der röntgenographischen Elastizitätskonstanten (REK) des Vielkristalls aus Einkristalldaten für beliebige Kristallsymmetrie. Zeitschrift für Met. 77, 620–626 (1986)Google Scholar
  50. 50.
    Pelkner, M., Neubauer, A., Reimund, V., Kreutzbruck, M., Schütze, A.: Routes for GMR-sensor design in non-destructive testing. Sensors 12, 12169–12183 (2012). CrossRefGoogle Scholar
  51. 51.
    Pelkner, M.: Entwicklung, Untersuchung und Anwendung von GMR-Sensorarrays für die Zerstörungsfreie Prüfung von ferromagnetischen Bauteilen. Dissertation, Universität des Saarlandes (2014)Google Scholar
  52. 52.
    Glenske, C., Loreit, U.: New 3D-magnetic field sensors with GMR-spin valve layers. In: 10th Symposium Magnetoresistive Sensors Magnetic Systems, pp. 79–86 (2009)Google Scholar
  53. 53.
    Laudien, U., Müller, M., Schulze, G., Teske, G.: DVS-Gefügerichtreihe Stahl. Deutscher Verlag für Schweisstechnik (DVS) GmbH, Düsseldorf (1979)Google Scholar
  54. 54.
    Gharibshahiyan, E., Raouf, A.H., Parvin, N., Rahimian, M.: The effect of microstructure on hardness and toughness of low carbon welded steel using inert gas welding. Mater. Des. 32(4), 2042–2048 (2011). CrossRefGoogle Scholar
  55. 55.
    Pang, W., Ahmed, N., Dunne, D.: Hardness and microstructural gradients in the heat affected zone of welded low-carbon quenched and tempered steels. Aust. Weld. J. 56(2), 36–48 (2011)Google Scholar
  56. 56.
    Bhole, S.D., Nemade, J.B., Collins, L., Liu, C.: Effect of nickel and molybdenum additions on weld metal toughness in a submerged arc welded HSLA line-pipe steel. J. Mater. Process. Technol. 173(1), 92–100 (2006). CrossRefGoogle Scholar
  57. 57.
    Macherauch, E.: Introduction To Residual Stress. In: Niku-Lari, A. (ed.) Residual Stress, pp. 1–36. Pergamon Books Ltd, Oxford (1987). CrossRefGoogle Scholar
  58. 58.
    Thompson, S.M., Allen, P.J., Tanner, B.K.: Magnetic properties of welds in high-strength pearlitic steels. IEEE Trans. Magn. 26(5), 1984–1986 (1990). CrossRefGoogle Scholar
  59. 59.
    DIN EN ISO 18265:2013: Metallic materials—conversion of hardness values (2014)Google Scholar
  60. 60.
    Hodgson, P., Hickson, M., Gibbs, R.: The production and mechanical properties of ultrafine ferrite. Mater. Sci. Forum 284–286, 63–72 (1998). CrossRefGoogle Scholar
  61. 61.
    Wellinger, K., Eichhorn, F., Gimmel, P.: Schweissen. Alfred Kröner Verlag, Stuttgart (1964)Google Scholar
  62. 62.
    Bruno, G.: Relaxation of residual stress in AISI 347 welded pipe: a time-of-flight neutron diffraction study. Zeitschrift für Met. 93(1), 33–41 (2002). MathSciNetCrossRefGoogle Scholar
  63. 63.
    Stegemann, R., Cabeza, S., Pelkner, M., Lyamkin, V., Sonntag, N., Bruno, G., Skrotzki, B., Kreutzbruck, M.: Evaluation of high spatial resolution imaging of magnetic stray fields for early damage detection. In: Bond, L.J., Chimenti, D.E. (eds.) AIP Conference Proceedings, AIP Publishing, Melville, NY, USA, vol 1806, pp. 110010–1–110010–10 (2017).
  64. 64.
    Spooner, S.: Neutron residual stress measurement in welds, chap 18. In: Fitzpatrick, M.E., Lodini, A. (eds.) Analysis of Residual Stress by Diffraction Using Neutron Synchrotron Radiation, pp. 296–318. Taylor a Francis, London (2003)CrossRefGoogle Scholar
  65. 65.
    Winholtz, R.A., Krawitz, A.D.: The effect of assuming the principal directions in neutron diffraction measurement of stress tensors. Mater. Sci. Eng. A 205(1–2), 257–258 (1996a). CrossRefGoogle Scholar
  66. 66.
    Winholtz, R.A., Krawitz, A.D.: Implications of equilibrium on principal macrostresses measured by neutron diffraction. Mater. Sci. Eng. A 221(1–2), 33–37 (1996b). CrossRefGoogle Scholar
  67. 67.
    Krawitz, A.D., Winholtz, R.A., Weisbrook, C.M.: Relation of elastic strain distributions determined by diffraction to corresponding stress distributions. Mater. Sci. Eng. A 206(2), 176–182 (1996). CrossRefGoogle Scholar
  68. 68.
    Hauk, V.: Structural and Residual Stress Analysis by Nondestructive Methods. Elsevier Science B.V, Amsterdam (1997)zbMATHGoogle Scholar
  69. 69.
    Perevertov, O.: Influence of the residual stress on the magnetization process in mild steel. J. Phys. D Appl. Phys. 40, 949–954 (2007). CrossRefGoogle Scholar
  70. 70.
    Takahashi, S., Kobayashi, S., Kikuchi, H., Kamada, Y.: Relationship between mechanical and magnetic properties in cold rolled low carbon steel. J. Appl. Phys. (2006). CrossRefGoogle Scholar
  71. 71.
    Tanner, B.K., Szpunar, J.A., Willcock, S.N.M., Morgan, L.L., Mundell, P.A.: Magnetic and metallurgical properties of high-tensile steels. J. Mater. Sci. 23(12), 4534–4540 (1988). CrossRefGoogle Scholar
  72. 72.
    Sablik, M.J., Jiles, D.C.: Coupled magnetoelastic theory of magnetic and magnetostrictive hysteresis. IEEE Trans. Magn. 29(4), 2113–2123 (1993). CrossRefGoogle Scholar
  73. 73.
    Kvasnica, B., Fabo, P.: Highly precise non-contact instrumentation for magnetic measurement of mechanical stress in low-carbon steel wires. Meas. Sci. Technol. 7, 763–767 (1996). CrossRefGoogle Scholar
  74. 74.
    Hinz, G., Voigth, H.: Magnetic Sensors, Sensors, A Comprehensive Survey, vol 5, VCH Verlagsgesellschaft mbH, Weinheim, chap Magnetoelastic Sensors, pp. 97–152 (2008) CrossRefGoogle Scholar
  75. 75.
    Cullity, B.D.: Magnetic Methods. In: Proceedings a Work. Nondestructive Evaluation Resdiual Stress, pp. 227–236. NTIAC-76-2, San Antonio, TX (2017)Google Scholar
  76. 76.
    DIN EN ISO 8249:2000: Welding—Determination of Ferrite Number (FN) in Austenitic and Duplex Ferritic-Austenitic Cr-Ni Stainless Steel Weld Metals (2000)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Robert Stegemann
    • 1
    Email author
  • Sandra Cabeza
    • 1
  • Matthias Pelkner
    • 1
  • Viktor Lyamkin
    • 1
  • Andreas Pittner
    • 1
  • Daniel Werner
    • 1
  • Robert Wimpory
    • 2
  • Mirko Boin
    • 2
  • Marc Kreutzbruck
    • 1
    • 3
  • Giovanni Bruno
    • 1
    • 4
  1. 1.Bundesanstalt für Materialforschung und -prüfung (BAM)BerlinGermany
  2. 2.HZB Helmholtz-Zentrum BerlinBerlinGermany
  3. 3.IKTUniversity of StuttgartStuttgartGermany
  4. 4.Institute of Physics and AstronomyUniversity of PotsdamPotsdam-GolmGermany

Personalised recommendations