Study of Formation and Reversion of the Martensitic Phase Induced by Deformation of Lean Duplex Stainless Steel

  • C. S. P. MendonçaEmail author
  • R. A. G. Matos
  • J. Mendes
  • M. L. N. M. Melo
  • G. Rodrigues
  • M. R. da Silva
  • G. Silva


Lean duplex stainless steels consist of a low percentage of nickel and molybdenum, presenting twice as much resistance compared to austenitic stainless steel and their cost is about twice as low. However, this class of steels has microstructural instabilities, such as the formation of martensite induced by austenite deformation by cold rolling. This feature can significantly alter the properties of interest of this steel. The formation of the martensitic structure, as well as its reversion, is little studied in the steels of the austenitic–ferritic structure. The process of formation and reversal of the martensitic structure in cold rolled stainless steel duplex UNS S32304 was investigated through magnetic measurements, microhardness and X-ray diffraction analyzes. The deformation process allowed the formation of the -martensite phase from the austenite phase with an increase in the values of saturation magnetization, coercive field and micro-hardness values as well as a change in the intensity of the X-ray diffraction peaks. The heat treatment performed at \(650\,^\circ \hbox {C}\) showed an increase in the peak intensity of the austenitic phase and a decrease in the saturation magnetization values, demonstrating a possible reversal of the martensitic structure. The SEM observations after annealing the Beraha’s etched samples revealed the possibility of a martensite transformation and reversion in a Lean duplex stainless steels.


Martensite Deformation Stainless steel lean duplex Reversion Magnetization saturation 



The authors acknowledge the Brazilian agencies, CAPES and FAPEMIG for their support and incentive in the development of this research.


  1. 1.
    Gunn, R.N.: Duplex Stainless Steels-Microstructures, Properties and Applications. Woodlhead Publishing, Cambridge (2003)Google Scholar
  2. 2.
    Cabrera, J.M., Mateo, A., Lanes, L., Prado, J.M., Anglada, M.: Hot deformation of duplex stainless steels. J. Mater. Process. Technol. 143, 321–325 (2003)CrossRefGoogle Scholar
  3. 3.
    Silva, A.L.V.C., Mei, P.R.: Aços e ligas especiais. Edgard Blucher, So Paulo (2006)Google Scholar
  4. 4.
    Ghosh, S.K., Mahat, D., Roychaudhuri, R., Mondal, R.: Effect of rolling deformation and solution treatment on microstructure and mechanical properties of a cast duplex stainless steel. Bull. Mater. Sci. 35, 839–846 (2012)CrossRefGoogle Scholar
  5. 5.
    Tavares, S.S.M., Pardal, J.M., da Silva, M.R., de Oliveira, C.A.S.: Martensitic transformation induced by cold deformation of lean duplex stainless steel Uns S32304. Mater. Res. 17, 381–385 (2014)CrossRefGoogle Scholar
  6. 6.
    Breda, M., Brunelli, K., Grazzi, F., Scherillo, A., Calliari, I.: Effects of cold rolling and strain-induced martensite formation in a SAF 2205 duplex stainless steel. Metall. Mater. Trans. A 46, 577–586 (2015)CrossRefGoogle Scholar
  7. 7.
    Alvarez, S.M., Bautista, A., Velasco, F.: Corrosion behaviour of corrugated lean duplex stainless steels in simulated concrete pore solutions. Corros. Sci. 53, 1748–1755 (2011)CrossRefGoogle Scholar
  8. 8.
    Herrera, C., Ponge, D., Raabe, D.: Design of a novel Mn-based 1 GPa duplex stainless TRIP steel with 60% ductility by a reduction of austenite stability. Acta Mater. 59, 46534664 (2011)CrossRefGoogle Scholar
  9. 9.
    Ran, Q., Xu, Y., Li, J., Wan, J., Xiao, X., Yu, H., Jiang, L.: Effect of heat treatment on transformation-induced plasticity of economical Cr19 duplex stainless steel. Mater. Des. 56, 959965 (2014)CrossRefGoogle Scholar
  10. 10.
    Baldo, S., Mészáros, I.: Effect of cold rolling on microstructure and magnetic properties in a metastable lean duplex stainless steel. J. Mater. Sci. 45, 5339–5346 (2010)CrossRefGoogle Scholar
  11. 11.
    Tavares, S.S.M., Silva, M.R., Pardal, J.M., Abreu, H.F.H., Gomes, A.M.: Microstructural changes produced by plastic deformation in the UNS S31803 duplex stainless steel. J. Mater. Technol. 180, 318–322 (2006)CrossRefGoogle Scholar
  12. 12.
    Tavares, S.S.M., Pardal, J.M., DA SILVA, M.J.G.O.M.E.S., ABREU, H.F.G., DA SILVA, M.R.: Deformation induced martensitic transformation in a 201 modified austenitic stainless steel. Mater. Charact. 60, 907 911 (2009)Google Scholar
  13. 13.
    Altpeter, I., Tschuncky, R., Hllen, K., Dobmann, G., Boller, C., Smaga, M., Sorich, A., Eifler, D.: Early detection of damage in thermo-cyclically loaded austenitic materials. In: Jayakumar, T., Balasubramanian, K., Raj, B. (ed.) Electromagnetic Nondestructive Evaluation (XV), ENDE (2011)Google Scholar
  14. 14.
    Eifler, D., Smaga, M., Klein, M.: Fatigue monitoring of metals based on mechanical hysteresis, electromagnetic ultrasonic, electrical resistance and temperature measurements. Mech. Eng. J. 3, 16-00303–16-00303 (2016)CrossRefGoogle Scholar
  15. 15.
    Haebner, F., Plaut, R.L., Padilha, A.F.: Separation of static recrystallization and reverse transformation of deformation-induced martensite in an austenitic stainless steel by calorimetric measurements. ISIJ Int. 43, 1472–1474 (2003)CrossRefGoogle Scholar
  16. 16.
    Talonem, J., Hanninen, H.: Formation of shear bands and strain-induced martensite during plastic deformation of metastable austenitic stainless steels. Acta Mater. 55, 6108–6118 (2007)CrossRefGoogle Scholar
  17. 17.
    Herrera, C., Plaut, R.L., Padilha, A.F.: Microstructural refinement during annealing of plastically deformed austenitic stainless steels. Mater. Sci. Forum 550, 423–428 (2007)CrossRefGoogle Scholar
  18. 18.
    Di Schino, A., Barteri, M., Kenny, J.M.: Development of ultra fine grain structure by martensitic reversion in stainless steel. J. Mater. Sci. Lett. 21, 751–753 (2002)CrossRefGoogle Scholar
  19. 19.
    Johannsen, D.L., Kyrolainen, A., Ferreira, P.J.: Influence of annealing treatment on the formation of nano/submicron grain size AISI 301 austenitic stainless steels. Metall. Mater. Trans. A 37A, 2325–2338 (2006)CrossRefGoogle Scholar
  20. 20.
    Chikazumi, S.: Physics of Magnetism. Wiley, New York (1964)Google Scholar
  21. 21.
    Mendonça, C.S.P., de Oliveira, V.D., Ribeiro, V.A.S., Oliveira, A.F., da Silva, M.R., Rodrigues, C.A., Melo, M.L.N.M.: Magnetic and microstructural characterization of cold rolled UNS S31803 duplex stainless steel. Ciência & Tecnologia dos Materiais 29, 22–27 (2017)CrossRefGoogle Scholar
  22. 22.
    Stwe, H.P., Padilha, A.F., Siciliano Jr., F.: Competition between recovery and recrystallization. Mater. Sci. Eng. A 333, 361367 (2002)Google Scholar
  23. 23.
    Guo, Y., Hu, J., Li, J.: Characterization of strain-induced martensite and anodic polarization properties of a newly developed lean duplex stainless steel 2002 after tensile deformation. Int. J. Electrochem. Sci. 11, 4812–4827 (2016)CrossRefGoogle Scholar
  24. 24.
    Kronmuller, H., Fahnle, M.: Micromagnetism and the Microstructure of Ferromagnetic Solids. Cambridge University Press, Cambridge (2003)Google Scholar
  25. 25.
    Khajepour, M., Sharafi, S.: Structural and magnetic properties of nanostructured Fe50 (Co50)6.5 wt% Si powder prepared by high energy ball milling. J. Alloys Compd. 509(29), 7729–7737 (2011)CrossRefGoogle Scholar
  26. 26.
    Sourmail, T.: Near equiatomic FeCo alloys: constitution, mechanical and magnetic properties. Progr. Mater. Sci. 50, 816–880 (2005)CrossRefGoogle Scholar
  27. 27.
    Chermahini, M.D., Sharafi, S., Shokrollahi, H., Zandrahimi, M.: Microstructural and magnetic properties of nanostructured Fe and Fe50Co50 powders prepared by mechanical alloying. J. Alloys Compd 474, 18–22 (2009)CrossRefGoogle Scholar
  28. 28.
    Reick, W., Pohl, M., Padilha, A.F.: Determination of stacking fault energy of austenite in a duplex stainless steel. Mater. Technol. 67, 253 256 (1996)Google Scholar
  29. 29.
    Lo, K.H., Shek, C.H., Lai, J.K.L.: Recent developments in stainless steels. Mater. Sci. Eng. R 65, 39–104 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • C. S. P. Mendonça
    • 1
    Email author
  • R. A. G. Matos
    • 1
  • J. Mendes
    • 1
  • M. L. N. M. Melo
    • 1
  • G. Rodrigues
    • 1
  • M. R. da Silva
    • 1
  • G. Silva
    • 1
  1. 1.Universidade Federal de ItajubáItajubáBrazil

Personalised recommendations