Advertisement

Eddy Current Probe Parameters Identification Using a Genetic Algorithm and Simultaneous Perturbation Stochastic Approximation

  • Sid Ahmed Chaiba
  • Abdelghani Ayad
  • Djamel Ziani
  • Yann Le Bihan
  • Martin Javier Garcia
Article

Abstract

This study tries to identify the coil parameters using numerical methods. The eddy current testing (ECT) is used for evaluation of a crack with the aid of numerical simulations by utilizing the identification of these parameters. In this study, a comparison of the performance of the GA and SPSA algorithms to identify the parameter values of the coil sensors are presented. So, the optimization probe geometry is introduced in the simulation with Three-dimensional finite element simulations (FLUX finite element code) were conducted to obtain eddy current signals resulting from a crack in a plate made of aluminium. The simulation results are compared with experimental measurements for the defect present in a plate.

Keywords

Eddy current testing Genetic algorithm Simultaneous perturbation stochastic approximation algorithm Hole crack 

References

  1. 1.
    Bouchala, T., Abdelhadi, B., Benoudjit, A.: Novel coupled electric field method for defect characterization in eddy current non-destructive testing systems. J. Nondestruct. Eval. 32, 1–11 (2013)CrossRefGoogle Scholar
  2. 2.
    Bouchala, T., Abdelhadi, B., Benoudjit, A.: Fast analytical modeling of eddy current non-destructive testing of magnetic material. J. Nondestruct. Eval. 32, 294–299 (2013)CrossRefGoogle Scholar
  3. 3.
    Bowler, J.R.: Eddy-current interaction with an ideal crack. I. The forward problem. J. Appl. Phys. 75(12), 15 (1994)Google Scholar
  4. 4.
    Yusa, N., Hashizume, H.: Numerical investigation of the ability of eddy current testing to size surface breaking cracks. NoNdestructive testing and evaluation. Taylor & Francis, Abington (2016)Google Scholar
  5. 5.
    García-Martín, J., Gómez-Gil, J., Vázquez-Sánchez, E.: Non-destructive techniques based on eddy current testing. Sensors 11, 2525–2565 (2011)CrossRefGoogle Scholar
  6. 6.
    Qi, H., Zhao, H., Liu, W., Zhang, H.: Parameters optimization and nonlinearity analysis of grating eddy current displacement sensor using neural network and genetic algorithm. J. Zhejiang Univ. Sci. A 10, 1205–1212 (2009)CrossRefGoogle Scholar
  7. 7.
    Skarlatos, A., Theodoulidis, T.: Solution to the eddy-current induction problem in a conducting half-space with a vertical cylindrical borehole. Proc. R. Soc. A 468, 1758–1777 (2012)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Leuca, T., Novac, M.: Optimization of eddy current heating process using genetic algorithms. Rev. Roum. Sci. Technol. Électrotechn. ET Énerg. 54(4), 355–363 (2009)Google Scholar
  9. 9.
    Foucher, F., Brunotte, X., Kalai, A., Le Floch Y., Pichenot, G., Prémel, D.: Simulation of eddy current testing with flux® and civa®. Journées Cofrend, Beaune, France, 24–26 mai (2005)Google Scholar
  10. 10.
    Foucher, F., Le Floch, Y., Verite, J.-C.: Contrôle Non Destructif avec FLUX. ‘Flux Magazin N°45-Trimestriel-Cedrat-Cedrat Technologies-Magsoft Corp (Mai 2004)Google Scholar
  11. 11.
  12. 12.
    Wheeler, H.A.: Simple inductance formulas for radio coils. Proc. Inst. Radio Eng. 16, 1398–1400 (1928)Google Scholar
  13. 13.
    Yating, Y., Pingan, D., Lichuan, X.: Coil impedance calculation of an eddy current sensor by the finite element method. Russ. J. Nondestr. Test. 44(4), 296–302 (2008)CrossRefGoogle Scholar
  14. 14.
    Grover, F.W.: A comparison of the formulas for the calculation of the inductance of coils and spirals wound with wire of large cross section. Bur. Stand. J. Res. 3, 163–190 (1929)CrossRefGoogle Scholar
  15. 15.
    Preda, G., Rebican, M., Hantila, F.I.: Integral formulation and genetic algorithms for defects geometry reconstruction using pulse eddy currents. IEEE Trans. Magn. 46, 3433–3436 (2010)CrossRefGoogle Scholar
  16. 16.
    Thollon, F., Burais, N.: Geometrical optimization of sensors for eddy currents non destructive testing and evaluation. IEEE Trans. Magn. 31, 2026–2031 (1995)CrossRefGoogle Scholar
  17. 17.
    Dolapchiev, I., Brandisky, K., Ivanov, P.: Eddy current testing probe optimization using a parallel genetic algorithm. Serb. J. Electr. J. Electr. Eng. 5, 39–48 (2008)CrossRefGoogle Scholar
  18. 18.
    Ozguven, E.E., Ozbay, K.: Performance Evaluation of Simultaneous Perturbation stochastic approximation algorithm for solving stochastic transportation network analysis problems. In: Proceedings of the 87th Annual Meeting on Transportation Research Board’s, Washington, D.C (2008)Google Scholar
  19. 19.
    Spall, J.C.: Multivariate stochastic approximation using a simultaneous perturbation gradient approximation. IEEE Trans. Autom. Control. 37, 332–341 (1992)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Sid Ahmed Chaiba
    • 1
  • Abdelghani Ayad
    • 1
  • Djamel Ziani
    • 1
  • Yann Le Bihan
    • 2
  • Martin Javier Garcia
    • 3
    • 4
  1. 1.ICEPS Laboratoire Faculté de TechnologieUniversité Djilali Liabes of Sidi Bel AbbesSidi Bel AbbesAlgeria
  2. 2.GeePs, C.N.R.S UMR 8507, CentraleSupélec, UPSud and UPMCParisFrance
  3. 3.R&D DepartmentIngeniería y Sistemas de Ensayos no Destructivos (ISEND)ValladolidSpain
  4. 4.University of Isabel I (UI1)BurgosSpain

Personalised recommendations