A Numerical Study on Interlaminar Defects Characterization in Fibre Metal Laminates with Flying Laser Spot Thermography

  • N. MontinaroEmail author
  • D. Cerniglia
  • G. Pitarresi


This work describes a numerical study on non-destructive evaluation of interlayer disbond defects in aerospace grade Fibre Metal Laminate sheets (FMLs). A recently proposed infrared non-destructive testing setup is considered, where a continuous laser is moved over the material surface, while the thermal footprint of the moving heat source is acquired, e.g. by an infrared thermal camera. Interlayer disbonds are then detected by analysing the features of the acquired thermograms. The experimental feasibility of this approach has been recently proved. The present work proposes a numerical simulation of the NDT approach, where the material thermal response is analysed and correlated to defects signatures. The numerical study has in particular investigated the influence of a number of different features on the defect detectability, and on the accuracy of defect edges and position identification. Such features comprise different FML materials (GLARE, CARAL, Ti-Gr), laser heat deposition and regions of data analyses.


Fibre Metal Laminates Delamination Non-destructive testing Finite element analysis (FEA) IR thermography Laser 


  1. 1.
    Sinmazçelik, T., Avcu, E., Bora, M.T., Çoban, O.: A review: fibre metal laminates, background, bonding types and applied test methods. Mater. Des. 32(7), 3671–3685 (2011)CrossRefGoogle Scholar
  2. 2.
    Vermeeren, C.A.J.R.: An historic overview of the development of fibre metal laminates. Appl. Compos. Mater. 10(4), 189–205 (2003)CrossRefGoogle Scholar
  3. 3.
    Sinke, J.: Some inspection methods for quality control and in-service inspection of GLARE. Appl. Compos. Mater. 10, 277–291 (2003)CrossRefGoogle Scholar
  4. 4.
    Bieniaś, J.: Fibre metal laminates—some aspects of manufacturing process, structure and selected properties. Compos. Theory Pract. 11, 39–43 (2011)Google Scholar
  5. 5.
    Hundley, J.M., Hahn, H., Yang, J., Facciano, A.: Multi-scale modeling of metal-composite interfaces in titanium-graphite fiber metal laminates part i: molecular scale. Open J. Compos. Mater. 1, 19–37 (2011)CrossRefGoogle Scholar
  6. 6.
    Cerniglia, D., Montinaro, N., Nigrelli, V.: Detection of disbonds in multi-layer structures by laser-based ultrasonic technique. J. Adhes. 84(10), 811–829 (2008)CrossRefGoogle Scholar
  7. 7.
    Cerniglia, D., Pantano, A., Montinaro, N.: 3D simulations and experiments of guided wave propagation in adhesively bonded multi-layered structures. NDT&E Int. 43, 527–535 (2010)CrossRefGoogle Scholar
  8. 8.
    Bisle, W., Meier, T., Mueller, S., Rueckert, S.: In-service inspection concept for GLARE\(\textregistered \) e an example for the use of new UT array inspection system. ECNDT Tu.2.1.1 (2006)Google Scholar
  9. 9.
    Bonavolonta, C., Valentino, M., Marrocco, N., Pepe, G.P.: Eddy current technique based on SQUID and GMR sensors for non-destructive evaluation of fiber/metal laminates. IEEE Trans. Appl. Supercond. 19(3), 808–811 (2009)CrossRefGoogle Scholar
  10. 10.
    Ibarra-Castanedo, C., Avdelidis, N.P., Grinzato, E.G., Bison, P.G., Marinetti, S., Plescanu, C.C., et al.: Delamination detection and impact damage assessment of GLARE by active thermography. Int. J. Mater. Prod. Technol. 41(1e2—-3e4), 5–16 (2011)CrossRefGoogle Scholar
  11. 11.
    Palumbo, D., Galietti, U.: Damage investigation in composite materials by means of new thermal data processing procedures. Strain 52(4), 276–285 (2016)CrossRefGoogle Scholar
  12. 12.
    Pitarresi, G.: Lock-in signal post-processing techniques in infra-red thermography for materials structural evaluation. Exp. Mech. 55(4), 667–680 (2015)CrossRefGoogle Scholar
  13. 13.
    Meola, C., Squillace, A., Giorleo, G., Nele, L.: Experimental characterization of an innovative Glare\(\textregistered \) fiber reinforced metal laminate in pin bearing. J. Compos. Mater. 37(17), 1543–1552 (2003)CrossRefGoogle Scholar
  14. 14.
    Montinaro, N., Cerniglia, D., Pitarresi, G.: Detection and characterisation of disbonds on fibre metal laminate hybrid composites by flying laser spot thermography. Compos. Part B 108, 164–173 (2017)CrossRefGoogle Scholar
  15. 15.
    Montinaro, N., Cerniglia, D., Pitarresi, G.: Flying laser spot thermography technique for the NDE of fibre metal laminates disbonds. Compos. Struct. 171, 63–76 (2017)CrossRefGoogle Scholar
  16. 16.
    Schlichting, J., Maierhofer, Ch., Kreutzbruck, M.: Crack sizing by laser excited thermography. NDT&E Int. 45, 133–140 (2012)CrossRefGoogle Scholar
  17. 17.
    Qiu, J., Pei, C., Liu, H., Chen, Z., Demachi, K.: Remote inspection of surface cracks in metallic structures with fiber-guided laser array spots thermography. NDT & E Int. 92, 213–220 (2017)CrossRefGoogle Scholar
  18. 18.
    He, M., Zhang, L., Zheng, W., Feng, Y.: Crack detection based on a moving mode of eddy current thermography method. Measurement 109, 119–129 (2017)CrossRefGoogle Scholar
  19. 19.
    Yang, R., He, Y., Gao, B., Yun Tian, G., Peng, J.: Lateral heat conduction based eddy current thermography for detection of parallel cracks and rail tread oblique cracks. Measurement 66, 54–61 (2015)CrossRefGoogle Scholar
  20. 20.
    Thiama, A., Kneipa, J.C., Cicala, E., Caulierb, Y., Jouvarda, J.M., Matteia, S.: Modeling and optimization of open crack detection by flying spot thermography. NDT & E Int. 89, 67–73 (2017)CrossRefGoogle Scholar
  21. 21.
    Montinaro, N., Cerniglia, D., Pitarresi, G.: Evaluation of interlaminar delaminations in titanium-graphite fibre metal laminates by infrared NDT techniques. NDT&E Int. (2018). CrossRefGoogle Scholar
  22. 22.
    Almond, D.P., Saintey, S., Lau, S.K.: Edge effects and defect sizing by transient thermography. In: Proceedings of Quantitative Infrared Thermography QIRT’94, Eurotherm Seminar no. 42, Sorrento, Italy, August 23–26, 1994, pp. 247–252 (1994)Google Scholar
  23. 23.
    Vavilov, V.P., Pawar, S.: Determining the lateral size of subsurface defects during active thermal nondestructive testing. Rus. J. Nondestruct. Test. 52(9), 528–531 (2016)CrossRefGoogle Scholar
  24. 24.
    Montinaro, N., Cerniglia, D., Pitarresi, G.: A numerical and experimental study through laser thermography for defect detection on metal additive manufactured parts. Fratt. ed Integr. Strutt. 43, 231–240 (2018)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dipartimento dell’Innovazione Industriale e Digitale (DIID)Università degli Studi di PalermoPalermoItaly

Personalised recommendations