Advertisement

Wall Thinning Characterization of Composite Reinforced Steel Tube Using Frequency-Domain PEC Technique and Neural Networks

  • Camilla B. Larocca
  • Claudia T. T. Farias
  • Eduardo F. Simas Filho
  • Ivan C. Silva
Article

Abstract

Resin fiber composites reinforcement is used to recover the original mechanical properties of steel tubes subjected to corrosion wall thinning. Pulsed Eddy Current (PEC) technique can perform nondestructive evaluation of this kind of component, due to its capability to penetrate nonmagnetic insulation. Despite the evaluation capability, distinguishing inner surface from outer surface defects is not an easy task for time-domain PEC technique. In this paper, Fast Fourier transform (FFT) in combination with multilayer perceptron (MLP) neural network classifiers are applied to PEC signals and used to detect defects (wall thinning) and also to indicate their position. The tested sample is a carbon steel tube, with 17 mm of composite reinforcement, where two defects were manufactured, one at the inner and another at the outer surface. An automated scanner system is used to obtain C-scan maps, showing the thinning areas. Two feature extraction methods are used to produce the input features for the neural network classifier: the coefficients of the FFT; and the parameters of an exponential curve fitted to the FFT coefficients. The results indicate that the MLP neural network correctly recognized the presence of wall thinning and its location with detection efficiencies of 97.4 and 97.0%, respectively. The PEC technique analysis in frequency-domain associated with a neural network classifier seems to be a promising alternative to identify the position of defects in composite reinforced steel tubes.

Keywords

Pulsed Eddy Currents Neural network Composite materials Tube 

Notes

Acknowledgements

The authors thank FAPESB for funding this research.

References

  1. 1.
    Rohem, N.R.F., Pacheco, L.J., Budhe, S., Banea, M.D., Sampaio, E.M., Barros, S.: Development and qualification of a new polymeric matrix laminated composite for pipe repair. Compos. Struct. 152, 737–745 (2016).  https://doi.org/10.1016/j.compstruct.2016.05.091 CrossRefGoogle Scholar
  2. 2.
    Duell, J.M., Wilson, J.M., Kessler, M.R.: Analysis of a carbon composite overwrap pipeline repair system. Int. J. Press. Vessel. Pip. 85, 782–788 (2008).  https://doi.org/10.1016/j.ijpvp.2008.08.001 CrossRefGoogle Scholar
  3. 3.
    Keller, M.W., Jellison, B.D., Ellison, T.: Moisture effects on the thermal and creep performance of carbon fiber/epoxy composites for structural pipeline repair. Composites 45, 1173–1180 (2013).  https://doi.org/10.1016/j.compositesb.2012.07.046 CrossRefGoogle Scholar
  4. 4.
    Winnik, S.: Corrosion Under Insulation (CUI) Guidelines, Revised edn. Woodhead Publishing Limited, Cambridge (2016)Google Scholar
  5. 5.
    Ahmed, W.H.: Evaluation of the proximity effect on flow-accelerated corrosion. Ann. Nucl. Energy 37, 598–605 (2010).  https://doi.org/10.1016/j.anucene.2009.12.020 CrossRefGoogle Scholar
  6. 6.
    He, Y., Tian, G., Zang, H., Alamin, M., Simm, A., Jackson, P.: Steel corrosion characterization using Pulsed Eddy Current systems. IEEE Sens. J. 12, 2113–2119 (2012).  https://doi.org/10.1109/JSEN.2012.2184280 CrossRefGoogle Scholar
  7. 7.
    Yu, Y., Yan, Y., Wang, F., Tian, G., Zhang, D.: An approach to reduce lift-off noise in Pulsed Eddy Current nondestructive technology. NDT E Int. 63, 1–6 (2014).  https://doi.org/10.1016/j.ndteint.2013.12.012 CrossRefGoogle Scholar
  8. 8.
    Rourke, M., Li, Y., Roberts, G.: Multi-Tubular Corrosion Inspection Using a Pulsed Eddy Current Logging Tool. In: IPTC 2013, International Petroleum Technology Conference.  https://doi.org/10.2523/16645-MS
  9. 9.
    Tian, G.Y., Sophian, A., Taylor, D., Rudlin, J.: Multiple sensors on Pulsed Eddy Current detection for 3d subsurface crack assessment. IEEE Sens. J. 5, 90–96 (2005).  https://doi.org/10.1109/JSEN.2004.839129 CrossRefGoogle Scholar
  10. 10.
    Huang, S., Wang, S.: New Technologies in Electromagnetic Non-destructive Testing, pp 41–79. Springer, Singapore (2016).  https://doi.org/10.1007/978-981-10-0578-7_2 CrossRefGoogle Scholar
  11. 11.
    Park, D.J., Angani, C.S., Kishore, M.B., Vértesy, G., Lee, D.H.: Application of the Pulsed Eddy Current technique to inspect pipelines of nuclear plants. J. Magn. 18, 342–347 (2013).  https://doi.org/10.4283/JMAG.2013.18.3.342 CrossRefGoogle Scholar
  12. 12.
    Renken, C.J.: The use of personal computer to extract information from Pulsed Eddy Current. Mater. Eval. 59, 356–360 (2001)Google Scholar
  13. 13.
    Majidnia, S., Rudlin, J., Nilavalan, R.: Investigations on a Pulsed Eddy Current system for flaw detection using an encircling coil on a steel pipe. Insight—Non-Destr. Test. Cond. Monit. 56, 560–565 (2014)CrossRefGoogle Scholar
  14. 14.
    Zeng, Z., Li, Y., Huang, L., Luo, M.: Frequency-domain defect characterization in Pulsed Eddy Current testing. Int. J. Appl. Electromagn. Mech. 45, 621–625 (2014).  https://doi.org/10.3233/JAE-141885 CrossRefGoogle Scholar
  15. 15.
    Chen, X., Hou, D., Zhao, L., Huang, P., Zhang, G.: Study on defect classification in multi-layer structures based on fisher linear discriminate analysis by using Pulsed Eddy Current technique. NDT E Int. 67, 46–54 (2014).  https://doi.org/10.1016/j.ndteint.2014.07.003 CrossRefGoogle Scholar
  16. 16.
    He, Y., Luo, F., Pan, M., Hu, X., Gao, J., Liu, B.: Defect classification based on rectangular Pulsed Eddy Current sensor in different directions. Sens Actuators A 157, 26–31 (2010).  https://doi.org/10.1016/j.sna.2009.11.012 CrossRefGoogle Scholar
  17. 17.
    Tian, G.Y., Sophian, A.: Defect classification using a new feature for Pulsed Eddy Current sensors. NDT E Int. 38, 77–82 (2005).  https://doi.org/10.1016/j.ndteint.2004.06.001 CrossRefGoogle Scholar
  18. 18.
    Tian, G.Y., He, Y., Adewale, I., Simm, A.: Research on spectral response of Pulsed Eddy Current and NDE applications. Sens. Actuators A 189, 313–320 (2013).  https://doi.org/10.1016/j.sna.2012.10.011 CrossRefGoogle Scholar
  19. 19.
    Cheng, W.: Pulsed Eddy Current testing of carbon steel pipes, wall-thinning through insulation and cladding. J. Nondestruct. Eval. 31, 215–224 (2012).  https://doi.org/10.1007/s10921-012-0137-9 CrossRefGoogle Scholar
  20. 20.
    Qiu, X., Zhang, P., Wei, J., Cui, X., Wei, C., Liu, L.: Defect classification by Pulsed Eddy Current technique in con-casting slabs based on spectrum analysis and wavelet decomposition. Sens. Actuators A 203, 272–81 (2013).  https://doi.org/10.1016/j.sna.2013.09.004 CrossRefGoogle Scholar
  21. 21.
    Pan, M., He, Y., Tian, G., Chen, D., Luo, F.: PEC frequency band selection for locating defects in two-layer aircraft structures with air gap variations. IEEE Trans. Instrum. Meas. 62, 2849–2856 (2013).  https://doi.org/10.1109/TIM.2013.2239892 CrossRefGoogle Scholar
  22. 22.
    Peng, Y., Qiu, X., Wei, J., Li, C., Cui, X.: Defect classification using PEC responses based on power spectral density analysis combined with EMD and EEMD. NDT E Int. 78, 37–5 (2016).  https://doi.org/10.1016/j.ndt&eint.2015.11.003
  23. 23.
    Kiwa, T., Kawata, T., Yamada, H., Tsukada, K.: Fourier-transformed eddy current technique to visualize cross-sections of conductive materials. NDT E Int. 40, 363–367 (2007).  https://doi.org/10.1016/j.ndteint.2007.01.006 CrossRefGoogle Scholar
  24. 24.
    Buck, J., Underhill, P.R., Morelli, J.E., Krause, T.W.: Simultaneous multiparameter measurement in Pulsed Eddy Current steam generator data using artificial neural networks. IEEE Trans. Instrum. Meas. 65, 672–679 (2016).  https://doi.org/10.1109/TIM.2016.2514778 CrossRefGoogle Scholar
  25. 25.
    Dolapchiev, I., Brandisky, K.: Crack sizing by using Pulsed Eddy Current technique and neural network. Facta Univ. 19, 371–377 (2006).  https://doi.org/10.2298/FUEE0603371D CrossRefGoogle Scholar
  26. 26.
    Xie, S., Chen, Z., Chen, H., Wang, X., Takagi, T., Uchimoto, T.: Sizing of wall thinning defects using Pulsed Eddy Current testing signals based on a hybrid inverse analysis method. IEEE Trans. Instrum. Meas. 49, 1653–1656 (2013).  https://doi.org/10.1109/TMAG.2012.2236827 CrossRefGoogle Scholar
  27. 27.
    Liu, Z., Forsyth, D.S., Lepine, B.A., Hammad, I., Farahbakhsh, B.: Investigation into classifying 3D Pulsed Eddy Current signals with neural network. Insight—Non-Destruct. Test. Cond. Monit. 45, 608–614 (2003).  https://doi.org/10.1784/insi.45.9.608.52940 CrossRefGoogle Scholar
  28. 28.
    Arjun, V., Sasi, B., Rao, B.C.P., Mukhopadhyay, C.K., Jayakumar, T.: Optimisation of Pulsed Eddy Current probe for detection of sub-surface defects in stainless steel plates. Sens. Actuators A 226, 69–75 (2015).  https://doi.org/10.1016/j.sna.2015.02.018 CrossRefGoogle Scholar
  29. 29.
    Sophian, A., Tian, G.Y., Taylor D Rudlin, J.: A feature extraction technique based on principal component analysis for Pulsed Eddy Current NDT. NDT E Int. 36, 37–41 (2003).  https://doi.org/10.1016/S0963-8695(02)00069-5 CrossRefGoogle Scholar
  30. 30.
    Haykin, S.: Neural Networks and Learning Machines, 3rd edn. Pearson Education, New Jersey (2009)Google Scholar
  31. 31.
    Diniz, P.S.R., Silva, E.A.B., Netto, S,L.: Digital Signal Processing: System Analysis and Design, 2nd edn. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  32. 32.
    Tian, L., Yin, C., Cheng, Y., Bai, L.: Successive approximation method for the measurement of thickness using Pulsed Eddy Current. IEEE Int. Instrum. Meas. Technol. Conf. 2015, 848–852 (2015).  https://doi.org/10.1109/I2MTC.2015.7151379 CrossRefGoogle Scholar
  33. 33.
    Fletcher, R., Reeves, C.M.: Function minimization by conjugate gradients. Comput. J. 7, 149–154 (1964).  https://doi.org/10.1093/comjnl/7.2.149 MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Simas Filho, E.F., Silva Junior, M.M., Farias, P.C.M.A., Albuquerque, M.C.S., Silva, I.C., Farias, C.T.T.: Flexible decision support system for ultrasound evaluation of fiber-metal laminates implemented in a DSP. NDT E Int. 79, 38–45 (2016).  https://doi.org/10.1016/j.ndteint.2015.12.001 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Nondestructive Inspection LaboratoryFederal Institute of Education, Science and Technology of BahiaSalvadorBrazil
  2. 2.Electrical Engineering ProgramFederal University of BahiaSalvadorBrazil

Personalised recommendations