Advertisement

Journal of Nondestructive Evaluation

, Volume 30, Issue 3, pp 172–178 | Cite as

Quantitative Multi-Inspection-Site Comparison of Probability of Detection for Vibrothermography Nondestructive Evaluation Data

  • Ming Li
  • Stephen D. Holland
  • William Q. Meeker
Article

Abstract

This paper describes the estimation of probability of detection (POD) for a vibrothermography inspection procedure. The results are based on a large scale experiment on specimens with two different kinds of metal containing fatigue cracks. The specimens were tested independently at three inspection sites: Iowa State University (ISU), Pratt and Whitney (PW) and General Electric (GE). Despite the substantially different vibrothermography configurations and experimental measurement responses, the estimated PODs as function of crack length and dynamic stress were similar for all three inspection sites, which make quantitative POD comparisons possible across different inspection sites.

Keywords

Maximum likelihood Noise interference model POD Sonic infrared inspection Thermosonics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Maldague, X.: Theory and Practice of Infrared Technology for Nondestructive Testing. Wiley, New York (2001) Google Scholar
  2. 2.
    Rantala, J., Wu, D., Busse, G.: Amplitude-modulated lock-in vibrothermography for NDE of polymers and composites. Res. Nondestruct. Eval. 7(4), 215–228 (1996) Google Scholar
  3. 3.
    Favro, L.D., Han, X., Ouyang, Z., Sun, G., Sui, H., Thomas, P.L.: Infrared imaging of defects heated by a sonic pulse. Rev. Sci. Instrum. 71(6), 2418–2421 (2000) CrossRefGoogle Scholar
  4. 4.
    Morbidini, M., Cawley, P., Barden, T., Almond, D., Duffour, P.: Prediction of the thermosonic signal from fatigue cracks in metals using vibration damping measurements. J. Appl. Phys. 100, 104905 (2006) CrossRefGoogle Scholar
  5. 5.
    Ibarra-Castanedo, C., Piau, J.M., Guilbert, S., Avdelidis, N.P., Genest, M., Bendada, A., Maldague, X.P.V.: Comparative study of active thermography techniques for the nondestructive evaluation of honeycomb structures. Res. Nondestruct. Eval. 20(1), 1–31 (2009) CrossRefGoogle Scholar
  6. 6.
    Holland, S.D., Uhl, C., Ouyang, Z., Patton, T., Li, M., Meeker, W.Q., Lively, J., Brasche, L., Eisenmann, D.: Quantifying the vibrothermographic effect. NDT&E Int. (2011, to appear) Google Scholar
  7. 7.
    Holland, S.D., Renshaw, J.: Physics-based image enhancement for infrared thermography. NDT&E Int. 43(5), 440–445 (2010) CrossRefGoogle Scholar
  8. 8.
    Annis, C.: MIL-HDBK-1823A, Nondestructive Evaluation System Reliability Assessment. Standardization Order Desk, Philadelphia (2009) Google Scholar
  9. 9.
    Li, M., Meeker, W.Q.: A noise interference model for estimating probability of detection for nondestructive evaluations. In: Thompson, D.O., Chimenti, D.E. (eds.) Review of Progress in Quantitative Nondestructive Evaluation, vol. 28. AIP Conference Proceedings, vol. 1096, pp. 1769–1776. (2009) Google Scholar
  10. 10.
    Pawitan, Y.: In All Likelihood: Statistical Modelling and Inference Using Likelihood. Oxford University Press, New York (2001) zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Ming Li
    • 1
  • Stephen D. Holland
    • 2
  • William Q. Meeker
    • 1
  1. 1.Center for Nondestructive Evaluation and Department of StatisticsIowa State UniversityAmesUSA
  2. 2.Center for Nondestructive Evaluation and Department of Aerospace EngineeringIowa State UniversityAmesUSA

Personalised recommendations