Advertisement

Ambiguous Bodies: The Role of Displayed Arousal in Emotion [Mis]Perception

  • R. M. ReynoldsEmail author
  • E. Novotny
  • J. Lee
  • D. Roth
  • G. Bente
Original Paper

Abstract

Emotions of other people cannot be experienced directly but are often inferred from a variety of verbal and nonverbal information, including expressive body movement (EBM). Inferring emotional states is critical in social interaction, and questions remain about the factors contributing to ambiguity of EBM. In addressing this issue, researchers have looked to the link between displayed arousal, or the intensity of the emotional expression, and the potency of a nonverbal signal to convey emotional content such as valence or category. This study reports experimental results that address limitations of prior research regarding the ambiguity of EBM. Using motion-capture technology that permits isolation of expressive cues, the results suggest that for displays of anger and happiness (a) the ambiguity of the emotional valence and category increases as a linear function of the displayed arousal, and (b) observers show a negative response bias and greater sensitivity to negative cues. Implications of these findings for research on emotion perception are discussed.

Keywords

Expressive body movement Emotion recognition Ambiguity Arousal display Perception Response bias 

Notes

References

  1. App, B., McIntosh, D. N., Reed, C. L., & Hertenstein, M. J. (2011). Nonverbal channel use in communication of emotion: How may depend on why. Emotion, 11, 603–617.  https://doi.org/10.1037/a0023164.Google Scholar
  2. Armistead, T. W. (2013). HL Wagner’s unbiased hit rate and the assessment of categorical forecasting accuracy. Weather and Forecasting, 28, 802–814.  https://doi.org/10.1175/WAF-D-12-00047.1.Google Scholar
  3. Atkinson, A. P. (2009). Impaired recognition of emotions from body movements is associated with elevated motion coherence thresholds in autism spectrum disorders. Neuropsychologia, 47, 3023–3029.  https://doi.org/10.1016/j.neuropsychologia.2009.05.019.Google Scholar
  4. Atkinson, A. P., Dittrich, W. H., Gemmell, A. J., & Young, A. W. (2004). Emotion perception from dynamic and static body expressions in point-light and full-light displays. Perception, 33, 717–746.  https://doi.org/10.1068/p5096.Google Scholar
  5. Aviezer, H., Hassin, R. R., Ryan, J., Grady, C., Susskind, J., Anderson, A., et al. (2008). Angry, disgusted, or afraid? Studies on the malleability of emotion perception. Psychological Science, 19, 724–732.  https://doi.org/10.1111/j.1467-9280.2008.02148.x.Google Scholar
  6. Aviezer, H., Trope, Y., & Todorov, A. T. (2012). Body cues, not facial expressions, discriminate between intense positive and negative emotions. Science, 338(6111), 1225–1229.  https://doi.org/10.1126/science.1224313.Google Scholar
  7. Barratt, D., Rédei, A. C., Innes-Ker, Å., & Van de Weijer, J. (2016). Does the Kuleshov effect really exist? Revisiting a classic film experiment on facial expressions and emotional contexts. Perception, 45, 847–874.  https://doi.org/10.1177/0301006616638595.Google Scholar
  8. Bente, G., Krämer, N. C., Petersen, A., & de Ruiter, J. P. (2001a). Computer animated movement and person perception: Methodological advances in nonverbal behavior research. Journal of Nonverbal Behavior, 25, 151–166.  https://doi.org/10.1023/A:1010690525717.Google Scholar
  9. Bente, G., Leuschner, H., Al Issa, A., & Blascovich, J. J. (2010). The others: Universals and cultural specificities in the perception of status and dominance from nonverbal behavior. Consciousness and Cognition, 19, 762–777.  https://doi.org/10.1016/j.concog.2010.06.006.Google Scholar
  10. Bente, G., Petersen, A., Krämer, N. C., & De Ruiter, J. P. (2001b). Transcript-based computer animation of movement: Evaluating a new tool for nonverbal behavior research. Behavior Research Methods, Instruments, & Computers, 33, 303–310.  https://doi.org/10.3758/BF03195383.Google Scholar
  11. Bente, G., Roth, D., Dratsch, T., & Kaspar, K. (2016). Emotions of my kin: Disambiguating expressive body movement in minimal groups. Culture and Brain, 4, 51–71.  https://doi.org/10.1007/s40167-016-0038-3.Google Scholar
  12. Boone, R. T., & Cunningham, J. G. (1998). Children’s decoding of emotion in expressive body movement: The development of cue attunement. Developmental Psychology, 34(5), 1007–1016.  https://doi.org/10.1037/0012-1649.34.5.1007.Google Scholar
  13. Carreno-Medrano, P., Gibet, S., Larboulette, C., & Marteau, P. F. (2014). Corpus creation and perceptual evaluation of expressive theatrical gestures. In International conference on intelligent virtual agents (pp. 109–119). Boston, MA: Springer.  https://doi.org/10.1007/978-3-319-09767-1_14.
  14. Carver, C. S. (2006). Approach, avoidance, and the self-regulation of affect and action. Motivation and Emotion, 30, 105–110.  https://doi.org/10.1007/s11031-006-9044-7.Google Scholar
  15. Crane, E. A., & Gross, M. M. (2013). Effort-shape characteristics of emotion-related body movement. Journal of Nonverbal Behavior, 37, 91–105.  https://doi.org/10.1007/s10919-013-0144-2.Google Scholar
  16. de Gelder, B., De Borst, A. W., & Watson, R. (2015). The perception of emotion in body expressions. Wiley Interdisciplinary Reviews: Cognitive Science, 6, 149–158.  https://doi.org/10.1002/wcs.1335.Google Scholar
  17. de Gelder, B., & Van den Stock, J. (2011). The bodily expressive action stimulus test (BEAST). Construction and validation of a stimulus basis for measuring perception of whole body expression of emotions. Frontiers in Psychology, 2, 1–6.  https://doi.org/10.3389/fpsyg.2011.00181.Google Scholar
  18. de Gelder, B., Van den Stock, J., Meeren, H. K., Sinke, C. B., Kret, M. E., & Tamietto, M. (2010). Standing up for the body. Recent progress in uncovering the networks involved in the perception of bodies and bodily expressions. Neuroscience and Biobehavioral Reviews, 34, 513–527.  https://doi.org/10.1016/j.neubiorev.2009.10.008.Google Scholar
  19. de Meijer, M. (1989). The contribution of general features of body movement to the attribution of emotions. Journal of Nonverbal Behavior, 13, 247–268.  https://doi.org/10.1007/BF00990296.Google Scholar
  20. Di Domenico, A., Palumbo, R., Mammarella, N., & Fairfield, B. (2015). Aging and emotional expressions: Is there a positivity bias during dynamic emotion recognition? Frontiers in Psychology, 6, 1130.  https://doi.org/10.3389/fpsyg.2015.01130.Google Scholar
  21. Ekman, P. (1993). Facial expression and emotion. American Psychologist, 48, 384–392.  https://doi.org/10.1037/0003-066X.48.4.384.Google Scholar
  22. Ekman, P. (2003). Unmasking the face: A guide to recognizing emotions from facial clues. Los Altos, CA: Malor Books.Google Scholar
  23. Ekman, P., & Friesen, W. V. (1969). The repertoire of nonverbal behavior: Categories, origins, usage, and coding. Semiotica, 1, 49–98.  https://doi.org/10.1515/semi.1969.1.1.49.Google Scholar
  24. Ennis, C., & Egges, A. (2012). Perception of complex emotional body language of a virtual character. In International conference on motion in games (pp. 112–121). Berlin: Springer.  https://doi.org/10.1007/978-3-642-34710-8_11.
  25. Grammer, K., Honda, M., Juette, A., & Schmitt, A. (1999). Fuzziness of nonverbal courtship communication unblurred by motion energy detection. Journal of Personality and Social Psychology, 77, 487–508.  https://doi.org/10.1037/0022-3514.77.3.487.Google Scholar
  26. Gross, M. M., Crane, E. A., & Fredrickson, B. L. (2012). Effort-shape and kinematic assessment of bodily expression of emotion during gait. Human Movement Science, 31, 202–221.  https://doi.org/10.1016/j.humov.2011.05.001.Google Scholar
  27. Hansen, C. H., & Hansen, R. D. (1988). Finding the face in the crowd: An anger superiority effect. Journal of Personality and Social Psychology, 54, 917–924.  https://doi.org/10.1037/0022-3514.54.6.917.Google Scholar
  28. Hareli, S., & Hess, U. (2010). What emotional reactions can tell us about the nature of others: An appraisal perspective on person perception. Cognition and Emotion, 24, 128–140.  https://doi.org/10.1080/02699930802613828.Google Scholar
  29. Herda, L., Fua, P., Plänkers, R., Boulic, R., & Thalmann, D. (2001). Using skeleton-based tracking to increase the reliability of optical motion capture. Human Movement Science, 20, 313–341.  https://doi.org/10.1016/S0167-9457(01)00050-1.Google Scholar
  30. Hernandez, N., Metzger, A., Magné, R., Bonnet-Brilhault, F., Roux, S., Barthelemy, C., et al. (2009). Exploration of core features of a human face by healthy and autistic adults analyzed by visual scanning. Neuropsychologia, 47, 1004–1012.  https://doi.org/10.1016/j.neuropsychologia.2008.10.023.Google Scholar
  31. Hess, U., Blairy, S., & Kleck, R. E. (1997). The intensity of emotional facial expressions and decoding accuracy. Journal of Nonverbal Behavior, 21, 241–257.  https://doi.org/10.1023/A:1024952730333.Google Scholar
  32. Hess, U., Blairy, S., & Kleck, R. E. (2000). The influence of facial emotion displays, gender, and ethnicity on judgments of dominance and affiliation. Journal of Nonverbal Behavior, 24, 265–283.  https://doi.org/10.1023/A:1006623213355.Google Scholar
  33. Hicheur, H., Kadone, H., Grezes, J., & Berthoz, A. (2013). Perception of emotional gaits using avatar animation of real and artificially synthesized gaits. In Humaine association conference on affective computing and intelligent interaction (pp. 460–466). Geneva: IEEE.  https://doi.org/10.1109/acii.2013.82.
  34. Huang, F. L. (2016). Alternatives to multilevel modeling for the analysis of clustered data. The Journal of Experimental Education, 84, 175–196.  https://doi.org/10.1080/00220973.2014.952397.Google Scholar
  35. Ito, T. A., Cacioppo, J. T., & Lang, P. J. (1998). Eliciting affect using the International Affective Picture System: Trajectories through evaluative space. Personality and Social Psychology Bulletin, 24, 855–879.  https://doi.org/10.1177/0146167298248006.Google Scholar
  36. Izard, C. E. (1994). Innate and universal facial expressions: Evidence from developmental and cross-cultural research. Psychological Bulletin, 115, 288–299.  https://doi.org/10.1037/0033-2909.115.2.288.Google Scholar
  37. Izard, C. E. (2007). Basic emotions, natural kinds, emotion schemas, and a new paradigm. Perspectives on Psychological Science, 2, 260–280.  https://doi.org/10.1111/j.1745-6916.2007.00044.x.Google Scholar
  38. Jessen, S., Obleser, J., & Kotz, S. A. (2012). How bodies and voices interact in early emotion perception. PLoS ONE, 7(4), 1–9.  https://doi.org/10.1371/journal.pone.0036070.Google Scholar
  39. Karg, M., Samadani, A. A., Gorbet, R., Kühnlenz, K., Hoey, J., & Kulić, D. (2013). Body movements for affective expression: A survey of automatic recognition and generation. IEEE Transactions on Affective Computing, 4, 341–359.  https://doi.org/10.1109/T-AFFC.2013.29.Google Scholar
  40. Kupper, Z., Ramseyer, F., Hoffmann, H., Kalbermatten, S., & Tschacher, W. (2010). Videobased quantification of body movement during social interaction indicates the severity of negative symptoms in patients with schizophrenia. Schizophrenia Research, 121(1), 90–100.  https://doi.org/10.1016/j.schres.2010.03.032.Google Scholar
  41. Lang, P. J. (1984). Cognition in emotion: Concept and action. In C. E. Izard, J. Kagan, & R. B. Zajonc (Eds.), Emotion, cognition, and behavior (pp. 192–228). New York: Cambridge University Press.Google Scholar
  42. Lee, E., Kang, J. I., Park, I. H., Kim, J. J., & An, S. K. (2008). Is a neutral face really evaluated as being emotionally neutral? Psychiatry Research, 157, 77–85.  https://doi.org/10.1016/j.psychres.2007.02.005.Google Scholar
  43. Macmillan, N. A. (2002). Signal detection theory. In H. Pashler & J. Wixsted (Eds.), Stevens’ handbook of experimental psychology (pp. 43–90). New York: Wiley.Google Scholar
  44. Martinez, L., Falvello, V. B., Aviezer, H., & Todorov, A. (2016). Contributions of facial expressions and body language to the rapid perception of dynamic emotions. Cognition and Emotion, 30, 939–952.  https://doi.org/10.1080/02699931.2015.1035229.Google Scholar
  45. Matsumoto, D., & Ekman, P. (1989). American–Japanese cultural differences in intensity ratings of facial expressions of emotion. Motivation and Emotion, 13, 143–157.  https://doi.org/10.1177/0022022192231005.Google Scholar
  46. Matsumoto, D. R., Frank, M. G., & Hwang, H. S. (2012). Reading people. Nonverbal communication: Science and applications (1st ed.). Thousand Oaks: SAGE Publications.Google Scholar
  47. McColl, D., & Nejat, G. (2014). Recognizing emotional body language displayed by a human-like social robot. International Journal of Social Robotics, 6, 261–280.  https://doi.org/10.1007/s12369-013-0226-7.Google Scholar
  48. Mignault, A., & Chaudhuri, A. (2003). The many faces of a neutral face: Head tilt and perception of dominance and emotion. Journal of Nonverbal Behavior, 27, 111–132.  https://doi.org/10.1023/A:1023914509763.Google Scholar
  49. Mobbs, D., Weiskopf, N., Lau, H. C., Featherstone, E., Dolan, R. J., & Frith, C. D. (2006). The Kuleshov effect: The influence of contextual framing on emotional attributions. Social Cognitive and Affective Neuroscience, 1, 95–106.  https://doi.org/10.1093/scan/nsl014.Google Scholar
  50. Normoyle, A., Liu, F., Kapadia, M., Badler, N. I., & Jörg, S. (2013). The effect of posture and dynamics on the perception of emotion. In Proceedings of the ACM symposium on applied perception (pp. 91–98).  https://doi.org/10.1145/2492494.2492500.
  51. Novotny, E., Reynolds, R., Bente, G., & Lee, J. (2019). Stimulus videos. Retrieved April 23, 2019, from https://osf.io/gy26e.
  52. Nowicki, S., Jr., & Carton, J. (1993). The measurement of emotional intensity from facial expressions. Journal of Social Psychology, 133, 749–750.  https://doi.org/10.1080/00224545.1993.9713934.Google Scholar
  53. Öhman, A., Lundqvist, D., & Esteves, F. (2001). The face in the crowd revisited: A threat advantage with schematic stimuli. Journal of Personality and Social Psychology, 80, 381–396.  https://doi.org/10.1037/0022-3514.80.3.381.Google Scholar
  54. Ortega, V., & Phillips, L. H. (2007). Effects of age and emotional intensity on the recognition of facial emotion. Experimental Aging Research, 34, 63–79.  https://doi.org/10.1080/03610730701762047.Google Scholar
  55. Parkinson, C., Walker, T. T., Memmi, S., & Wheatley, T. (2017). Emotions are understood from biological motion across remote cultures. Emotion, 17, 459–477.  https://doi.org/10.1037/emo0000194.Google Scholar
  56. Pell, M. D., Monetta, L., Paulmann, S., & Kotz, S. A. (2009). Recognizing emotions in a foreign language. Journal of Nonverbal Behavior, 33, 107–120.  https://doi.org/10.1007/s10919-008-0065-7.Google Scholar
  57. Pohl, A., Wolters, A., & Ponseti, J. (2016). Investigating the task dependency of viewing time effects. The Journal of Sex Research, 53, 1027–1035.  https://doi.org/10.1080/00224499.2015.1089429.Google Scholar
  58. Rubin, D. C., & Talarico, J. M. (2009). A comparison of dimensional models of emotion: Evidence from emotions, prototypical events, autobiographical memories, and words. Memory, 17, 802–808.  https://doi.org/10.1080/09658210903130764.Google Scholar
  59. Sawada, M., Suda, K., & Ishii, M. (2003). Expression of emotions in dance: Relation between arm movement characteristics and emotion. Perceptual and Motor Skills, 97, 697–708.  https://doi.org/10.2466/pms.2003.97.3.697.Google Scholar
  60. Schubert, E. (2007). Locus of emotion: The effect of task order and age on emotion perceived and emotion felt in response to music. Journal of Music Therapy, 44, 344–368.  https://doi.org/10.1093/jmt/44.4.344.Google Scholar
  61. Sevdalis, V., & Keller, P. E. (2012). Perceiving bodies in motion: Expression intensity, empathy, and experience. Experimental Brain Research, 222, 447–453.  https://doi.org/10.1007/s00221-012-3229-y.Google Scholar
  62. Song, H., & Schwarz, N. (2009). If it’s difficult to pronounce, it must be risky: Fluency, familiarity, and risk perception. Psychological Science, 20, 135–138.  https://doi.org/10.1111/j.1467-9280.2009.02267.x.Google Scholar
  63. Stanislaw, H., & Todorov, N. (1999). Calculation of signal detection theory measures. Behavior Research Methods, Instruments, & Computers, 31, 137–149.  https://doi.org/10.3758/BF03207704.Google Scholar
  64. Tracy, J. L., & Robins, R. W. (2008). The automaticity of emotion recognition. Emotion, 8, 81–95.  https://doi.org/10.1037/1528-3542.8.1.81.Google Scholar
  65. Venture, G., Kadone, H., Zhang, T., Grèzes, J., Berthoz, A., & Hicheur, H. (2014). Recognizing emotions conveyed by human gait. International Journal of Social Robotics, 6, 621–632.  https://doi.org/10.1007/s12369-014-0243-1.Google Scholar
  66. Visch, V. T., Goudbeek, M. B., & Mortillaro, M. (2014). Robust anger: Recognition of deteriorated dynamic bodily emotion expressions. Cognition and Emotion, 28, 936–946.  https://doi.org/10.1080/02699931.2013.865595.Google Scholar
  67. Wagner, H. L. (1993). On measuring performance in category judgment studies of nonverbal behavior. Journal of Nonverbal Behavior, 17, 3–28.  https://doi.org/10.1007/BF00987006.Google Scholar
  68. Wallbott, H. G. (1998). Bodily expression of emotion. European Journal of Social Psychology, 28, 879–896.  https://doi.org/10.1002/(SICI)1099-0992(1998110)28:6%3c879:AID-EJSP901%3e3.0.CO;2-W.Google Scholar
  69. Yan, C., Dillard, J. P., & Shen, F. (2012). Emotion, motivation, and the persuasive effects of message framing. Journal of Communication, 62, 682–700.  https://doi.org/10.1111/j.1460-2466.2012.01655.x.Google Scholar
  70. Zupan, B. (2015). Recognition of high and low intensity facial and vocal expressions of emotion by children and adults. Journal of Social Sciences and Humanities, 1, 332–344.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of CommunicationMichigan State UniversityEast LansingUSA
  2. 2.University of WürzburgWürzburgGermany

Personalised recommendations