Advertisement

Journal of Nonverbal Behavior

, Volume 43, Issue 2, pp 111–132 | Cite as

A Systems Model of Dyadic Nonverbal Interaction

  • Miles L. PattersonEmail author
Review Paper

Abstract

This article discusses a new systems model of dyadic nonverbal interaction. The model builds on earlier theories by integrating partners’ parallel sending and receiving nonverbal processes into a broader, dynamic ecological system. It does so in two ways. First, it moves the level of description beyond the individual level to the coordination of both partners’ contributions to the interaction. Second, it recognizes that the relationships between (a) individuals’ characteristics and processes and (b) the social ecology of the interaction setting are reciprocal and best analyzed at the systems level. Thus, the systems model attempts to describe and explain the dynamic interplay among individual, dyadic, and environmental processes in nonverbal interactions. The potential utility and the limitations of the systems model are discussed and the implications for future research considered. Although the systems model is focused explicitly on face-to-face nonverbal communication, it has considerable relevance for digital communication. Specifically, this model provides a useful framework for examining the social effects of mobile device use and as a template for studying human–robot interactions.

Keywords

Nonverbal behavior Systems approach Interaction Theories Automaticity 

Notes

References

  1. Altman, I. (1975). The environment and social behavior. Monterey, CA: Brooks/Cole.Google Scholar
  2. Ambady, N., Bernieri, F. J., & Richeson, J. A. (2000). Toward a histology of social behavior: Judgmental accuracy from thin slices of the behavioral stream. In M. P. Zanna (Ed.), Advances in experimental social psychology (Vol. 32, pp. 201–271). San Diego, CA: Academic Press.Google Scholar
  3. Ambady, N., & Rosenthal, R. (1992). Thin slices of behavior as predictors of interpersonal consequences: A meta-analysis. Psychological Bulletin, 111, 256–274.Google Scholar
  4. Argyle, M., & Dean, J. (1965). Eye-contact, distance and affiliation. Sociometry, 28, 289–304.Google Scholar
  5. Bargh, J. A. (1989). Conditional automaticity: Varieties of automatic influence in social perception and cognition. In J. S. Uleman & J. A. Bargh (Eds.), Unintended thought (pp. 3–51). New York: Guilford.Google Scholar
  6. Bargh, J. A. (1990). Auto-motives: Preconscious determinants of thought and behavior. In E. T. Higgins & R. M. Sorrentino (Eds.), Handbook of motivation and cognition (2nd ed., pp. 93–130). New York: Guilford.Google Scholar
  7. Bargh, J. A. (1997). The automaticity of everyday life. In R. S. Wyer (Ed.), Advances in social cognition (pp. 1–61). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  8. Bargh, J. A., Chen, M., & Burrows, L. (1996). Automaticity of social behavior: direct effects of trait construct and stereotype activation on action. Journal of Personality and Social Psychology, 71, 230–244.Google Scholar
  9. Bargh, J. A., Gollwitzer, P. M., Lee-Chai, A., Barndollar, K., & Trotschel, R. (2001). The automated will: nonconscious activation and pursuit of behavioral goals. Journal of Personality and Social Psychology, 81, 1014–1027.Google Scholar
  10. Barker, R. G. (1968). Ecological psychology: Concepts and methods for studying the environment of human behavior. Stanford, CA: Stanford University Press.Google Scholar
  11. Baumeister, R. F., Vohs, K. D., & Funder, D. C. (2007). Psychology as the science of self-reports and finger movements. Whatever happened to actual behavior? Perspectives on Psychological Science, 2, 396–403.Google Scholar
  12. Berger, C. B. (1997). Planning strategic interaction. Mahwah, NJ: Erlbaum.Google Scholar
  13. Bilton, N. (2013). Disruptions: More connected, yet more alone. The New York Times. Retrieved September 22, 2013, from http://bits.blogs.nytimes.com/2013/09/01/disruptions-more-connected-yet-more-alone/?_r=1.
  14. Breazeal, C. (2003). Emotion and sociable humanoid robots. International Journal of Human-Computer Studies, 59, 119–155.Google Scholar
  15. Brunswik, E. (1955). Representative design and probabilistic theory in a functional psychology. Psychological Review, 62, 193–217.Google Scholar
  16. Bugeja, M. (2005). Interpersonal divide: The search for community in a technological age. New York: Oxford University Press.Google Scholar
  17. Burgoon, J. K. (1978). A communication model of personal space violations: Explication and an initial test. Human Communication Research, 4, 129–142.Google Scholar
  18. Burgoon, J. K., Stern, L. A., & Dillman, L. (1995). Interpersonal adaptation: Dyadic interaction patterns. New York: Cambridge University Press.Google Scholar
  19. Cappella, J. N., & Greene, J. O. (1982). A discrepancy-arousal explanation of mutual influence in expressive behavior for adult and infant-adult interaction. Communication Monographs, 49, 89–114.Google Scholar
  20. Carney, D. A., Colvin, C. A., & Hall, J. A. (2007). A thin slice perspective on the accuracy of first impressions. Journal of Research in Personality, 41, 1054–1072.Google Scholar
  21. Chartrand, T. Y., & Bargh, J. A. (1999). The chameleon effect: The perception-behavior link and social interaction. Journal of Personality and Social Psychology, 76, 893–910.Google Scholar
  22. Cloutier, J., & Macrae, C. N. (2007). Who or what are you? Facial orientation and person construal. European Journal of Social Psychology, 37, 1298–1309.Google Scholar
  23. Corrales, J., Gomez, G., Torres, F., & Perdereau, V. (2012). Cooperative tasks between humans and robots in industrial environments. International Journal of Advanced Robotic Systems, 9, 1–10.Google Scholar
  24. Crivelli, C., & Fridlund, A. J. (2018). Facial displays are tools for social influence. Trends in Cognitive Sciences, 22, 388–399.Google Scholar
  25. Dautenhahn, K. (2002). Design spaces and niche spaces of believable social robots. In Proceedings of the 2002 IEEE Robot and Human Interactive Communication (pp. 192–197).Google Scholar
  26. De Sola Gutierrez, J., De Fonseca, F. R., & Rubio, G. (2016). Cell phone addiction: A review. Frontiers in Psychiatry, 7, 175.Google Scholar
  27. Dijksterhuis, A., & Bargh, J. A. (2001). The perception-behavior expressway: Automatic effects of social perception on social behavior. In M. P. Zanna (Ed.), Advances in experimental social psychology (Vol. 33, pp. 1–40). San Diego: Academic Press.Google Scholar
  28. Ekman, P. (1999). Basic emotions. In T. D. T. Power (Ed.), The handbook of cognition and emotion (pp. 45–60). Sussex: Wiley.Google Scholar
  29. Fiske, S. T. (1992). Thinking is for doing: Portraits of social cognition from daguerreotype to laserphoto. Journal of Personality and Social Psychology, 63, 877–889.Google Scholar
  30. Fiske, S. T., & Taylor, S. E. (1995). Social cognition (2nd ed.). New York: McGraw-Hill.Google Scholar
  31. Fridlund, A. J. (1994). Human facial expression: An evolutionary view. San Diego: Academic Press.Google Scholar
  32. Fridlund, A. J. (2017). The behavioral ecology view of facial expressions, 25 years later. In J. M. Fernandez-Dols & J. A. Russell (Eds.), The science of facial expressions (pp. 77–92). Oxford: Oxford University Press.Google Scholar
  33. Gilbert, D. T., & Krull, D. S. (1988). Seeing less and knowing more: The benefits of perceptual ignorance. Journal of Personality and Social Psychology, 54, 193–202.Google Scholar
  34. Goffman, E. (1963). Behavior in public places. New York: Free Press.Google Scholar
  35. Goodrich, M., & Schultz, A. (2007). Human-robot interaction: A survey. Foundations and Trends in Human-Computer Interaction, 1, 203–275.Google Scholar
  36. Gosling, S. D., Gaddis, S., & Vazire, S. (2008). First impressions based on the environments we create and inhabit. In N. Ambady & J. J. Skowronski (Eds.), First impressions (pp. 334–356). New York: Guilford.Google Scholar
  37. Hall, J. A., & Knapp, M. L. (Eds.). (2013). Nonverbal communication. Berlin: DeGruyter Mouton.Google Scholar
  38. Hugenberg, K., & Bodenhausen, G. V. (2003). Facing prejudice: Implicit prejudice and the perception of facial threat. Psychological Science, 14, 640–643.Google Scholar
  39. James, W. (1983). The principles of psychology. Cambridge, MA: Harvard University Press. (Original work published 1890).Google Scholar
  40. Jones, E. E., & Davis, K. E. (1965). From acts to dispositions: The attribution process in person perception. In L. Berkowitz (Ed.), Advances in experimental social psychology (Vol. 2, pp. 220–266). New York: Academic Press.Google Scholar
  41. Kelley, H. H. (1967). Attribution theory in social psychology. In D. Levine (Ed.), Nebraska symposium on motivation (Vol. 15, pp. 192–238). Lincoln, NE: University of Nebraska Press.Google Scholar
  42. Knowles, E. S. (1983). Social physics and the effects of others: Tests of the effects of audience size and distance on social judgments and behavior. Journal of Personality and Social Psychology, 45, 1263–1279.Google Scholar
  43. Lakin, J. L. (2006). Automatic cognitive processes and nonverbal communication. In V. Manusov & M. L. Patterson (Eds.), The Sage handbook of nonverbal communication (pp. 59–77). Thousand Oaks, CA: Sage Publications.Google Scholar
  44. Lakin, J. L. (2013). Behavioral mimicry and interpersonal synchrony. In J. A. Hall & M. L. Knapp (Eds.), Nonverbal communication (pp. 539–575). Berlin: De Gruyter Mouton.Google Scholar
  45. Lederman, T., & Kenny, D. A. (2017). Analyzing dyadic data with multilevel modeling versus structural equation modeling: A tale of two methods. Journal of Family Psychology, 31, 442–452.Google Scholar
  46. Leung, L., & Liang, J. (2015). Mobile phone addiction. In Z. Yan (Ed.), Encyclopedia of mobile phone behavior (pp. 640–647). Hershey, PA: IGI Global Publishers.Google Scholar
  47. Liljenquist, K. A., Zhong, C.-B., & Galinsky, A. D. (2010). The smell of virtue: Clean scents promote reciprocity and charity. Psychological Science, 21(381–383), 21.Google Scholar
  48. Lloyd, D. M., Coates, A., Knopp, J., Oram, S., & Rowbotham, S. (2009). Don’t stand so close to me: The effect of auditory input on interpersonal space. Perception, 38, 617–620.Google Scholar
  49. Loersch, C., & Payne, B. K. (2011). The situated inference model: An integrative account of the effects of primes on perception, behavior, and motivation. Perspectives on Psychological Science, 6, 234–252.Google Scholar
  50. Manusov, V., & Patterson, M. L. (Eds.). (2006). The Sage handbook of nonverbal communication. Thousand Oaks, CA: Sage.Google Scholar
  51. Marquardt, G., Cross, E. S., de Sousa, A. A., Edelstein, E., Farne, A., Leszczynski, M., et al. (2015). There or not there? A multidisciplinary review and research agenda on the impact of transparent barriers on human perception, action, and social behavior. Frontiers in Psychology, 6, 1381.  https://doi.org/10.3389/fpsyg.2015.0138.Google Scholar
  52. Matsumoto, D., Hwang, H. C., & Frank, M. G. (Eds.). (2016). APA handbook of nonverbal communication. Washington, DC: American Psychological Association.Google Scholar
  53. Mavridis, N. (2014). A review of verbal and non-verbal human-robot interactive communication. Robotics and Autonomous System, 63, 22–35.Google Scholar
  54. McArthur, L. Z., & Baron, R. M. (1983). Toward an ecological theory of social perception. Psychological Review, 90, 215–238.Google Scholar
  55. Oishi, S., & Graham, J. (2010). Social ecology: Lost and found in psychological science. Perspectives on Psychological Science, 5, 356–377.Google Scholar
  56. Park, S., Patterson, M. L., & Hwang, Y. (2015). Toward a systems model of human-robot interaction. Unpublished manuscript.Google Scholar
  57. Patterson, M. L. (1973). Compensation in nonverbal immediacy behaviors: A review. Sociometry, 36, 237–252.Google Scholar
  58. Patterson, M. L. (1976). An arousal model of interpersonal intimacy. Psychological Review, 83, 237–252.Google Scholar
  59. Patterson, M. L. (1982). A sequential functional model of nonverbal exchange. Psychological Review, 89, 231–249.Google Scholar
  60. Patterson, M. L. (1983). Nonverbal behavior: A functional perspective. New York: Springer.Google Scholar
  61. Patterson, M. L. (1995). A parallel process model of nonverbal communication. Journal of Nonverbal Behavior, 19, 3–29.Google Scholar
  62. Patterson, M. L. (2001). Toward a comprehensive model of nonverbal communication. In W. P. Robinson & H. Giles (Eds.), The new handbook of language and social psychology (pp. 159–176). Chichester: Wiley.Google Scholar
  63. Patterson, M. L. (2006). The evolution of theories of nonverbal interaction. In V. Manusov & M. L. Patterson (Eds.), The Sage handbook of nonverbal communication (pp. 21–39). Thousand Oaks, CA: Sage.Google Scholar
  64. Patterson, M. L. (2008). Back to social behavior: Mining the mundane. Basic and Applied Social Psychology, 30, 93–101.Google Scholar
  65. Patterson, M. L. (2011). More than words: The power of nonverbal communication. Barcelona: Editorial Aresta.Google Scholar
  66. Patterson, M. L. (2013). Toward a systems approach to nonverbal interaction. In J. A. Hall & M. L. Knapp (Eds.), Nonverbal communication (pp. 515–538). Berlin: DeGruyter Mouton.Google Scholar
  67. Patterson, M. L. (2014). Reflections on historical trends and prospects in contemporary nonverbal research. Journal of Nonverbal Behavior, 38, 171–180.Google Scholar
  68. Patterson, M. L., Lammers, V. M., & Tubbs, M. E. (2014). Busy signal: Effects of mobile device usage on pedestrian encounters. Journal of Nonverbal Behavior, 38, 313–324.Google Scholar
  69. Patterson, M. L., & Quadflieg, S. (2016). The physical environment and nonverbal communication. In D. Matsumoto, H. C. Hwang, & M. G. Frank (Eds.), APA handbook of nonverbal communication (pp. 189–220). Washington, DC: American Psychological Association.Google Scholar
  70. Patterson, M. L., & Ritts, V. (1997). Social and communicative anxiety: A review and meta-analysis. In B. R. Burleson (Ed.), Communication Yearbook 20 (pp. 262–303). Thousand Oaks, CA: Sage Publications.Google Scholar
  71. Patterson, M. L., Webb, A., & Schwartz, W. (2002). Passing encounters: Patterns of recognition and avoidance in pedestrians. Basic and Applied Social Psychology, 24, 57–66.Google Scholar
  72. Re, D. E., & Rule, N. O. (2016). Appearance and physiognomy. In D. Matsumoto, H. C. Hwang, & M. G. Frank (Eds.), APA handbook of nonverbal communication (pp. 221–256). Washington, DC: American Psychological Association.Google Scholar
  73. Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169–192.Google Scholar
  74. Schachter, S., & Singer, J. E. (1962). Cognitive, social, and physiological determinants of emotional state. Psychological Review, 69, 379–399.Google Scholar
  75. Shanahan, M. J., Hill, P. L., Roberts, B. W., Eccles, J., & Friedman, H. S. (2014). Conscientiousness, health, and aging: The life course of personality model. Developmental Psychology, 50, 1407–1425.Google Scholar
  76. Stokols, D. (2018). Social ecology in the digital age: Solving complex problems in a globalized world. London: Academic Press.Google Scholar
  77. Webb, E., Campbell, D., Schwartz, R., & Sechrest, L. (1966). Unobtrusive measures: Nonreactive research in the social sciences. Chicago: Rand McNally.Google Scholar
  78. Weir, K. (2018). The dawn of social robots. Monitor on Psychology, 49, 50–56.Google Scholar
  79. Wicker, A. W. (1979). An introduction to ecological psychology. Monterey, CA: Brooks/Cole.Google Scholar
  80. Zebrowitz, L. A. (1997). Reading faces: Window to the soul?. Boulder, CO: Westview Press.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Psychological SciencesUniversity of Missouri-St. LouisSt. LouisUSA

Personalised recommendations