Advertisement

Journal of Medical Systems

, 43:307 | Cite as

Efficient Image De-Noising Technique Based on Modified Cuckoo Search Algorithm

  • Sakthidasan @ Sankaran KEmail author
  • Vasudevan N
  • Kumara Guru Diderot P.
  • Nagarajan V
Image & Signal Processing
  • 23 Downloads
Part of the following topical collections:
  1. Wearable Computing Techniques for Smart Health

Abstract

The image restoration has emerged as a very vital investigation technique in the domain of the image processing. The underlying motive behind the image restoration is devoted to the augmentation of the perceived visual impact of image so as to make it almost identical to the original image. A host of exploration approaches are now in vogues which are intended to steer clear of the noise, thereby regaining the images with original quality. In our earlier research, two distinct noise elimination methods like the (OGHP) and SURE shrinkage were effectively employed for the purpose of denoising, though the relative PSNR and SSIM efficiencies did not come up to the desired level. In the innovative approach envisaged in the document, at the outset, the noise is included by means of two processes like the salt and pepper and impulse noise. Subsequently, the pre-processing methods are performed with the able assistance of two novel filters such as the adaptive median filter and adaptive fuzzy switching. Thereafter, the preprocessed image is furnished to the succeeding function of noise elimination like the (OGHP) and SURE shrinkage. In the course of the OGHP noise elimination technique, the GHP constraints are optimized by employing the Cuckoo Search Algorithm. Thereafter, the noise-eliminated image is effectively estimated with the help of the Discrete Wavelet Transform (DWT). The consequential noiseless images are subjected to the image restoration procedure by efficiently employing the AGA approach. The cheering performance outcomes chant the success stories of the novel image restoration method, highlighting its superlative efficiency. Moreover, the efficacy of the innovative approach is assessed by means of a set of noise-polluted images and contrasted with the modern noiseless image restoration technique.

Keywords

Image de-noising Image restoration Adaptive median filter Adaptive genetic algorithm (AGA) MODIFIED cuckoo search algorithm (MCSA) Discrete wavelet transform (DWT) Adaptive genetic algorithm (AGA) 

Notes

References

  1. 1.
    Sarker, S., Chowdhury, S., Laha, S., and Dey, D., Use Of Non-Local Means Filter To Denoise Image Corrupted By Salt And Pepper Noise. Signal & Image Processing: An International Journal 3(2):223–235, 2012.Google Scholar
  2. 2.
    Cho, T. S., Zitnick, L., Joshi, N., Kang, S. B., Szeliski, R., and Freeman, W., Image Restoration by Matching Gradient Distributions. IEEE Trans. Pattern Anal. Mach. Intell. 34(4):683–694, 2012.CrossRefGoogle Scholar
  3. 3.
    Kaur, M., and Sharm, R., Restoration Of Medical Images Using Denoising. International Journal For Science And Emerging Technologies With Latest Trends 5(1):35–38, 2013.Google Scholar
  4. 4.
    George, A., Rajakumar, B. R., and Suresh, B., Markov Random Field based Image Restoration with aid of Local and Global Features. Int. J. Comput. Appl. 48(8):0975–0888, 2012.Google Scholar
  5. 5.
    Lefkimmiatis, S., Bourquard, A., and Unser, M., Hessian-Based Norm Regularization For Image restoration With Biomedical Applications. IEEE Trans. Image Process. 21(3):983–995, 2012.CrossRefGoogle Scholar
  6. 6.
    Zheng, S., Pan, Z., Zhao, X., and Wang, G., A General Adaptive Variational Model For Image Restoration Based On First And Second Order Derivatives. Journal Of Computational Information Systems 8(24):10169–10175, 2012.Google Scholar
  7. 7.
    Sakthidasan @ Sankaran, K., Prabha S., and Rubesh Anand, P. M., Optimized gradient histogram preservation with block wise SURE shrinkage for noise free image restoration. Springer -Cluster Computing- The Journal of Networks, Software Tools and Applications, 1-22 , ISSN 1573-7543, 2018
  8. 8.
    Zhang, H., Yang, J., Zhang, Y., and Huang, T., Image and Video Restoration via Non-Local Kernel regression. IEEE Transactions on Systems, Man, and Cybernetics–Part B: Cybernetics 42(6):1–12, 2012.Google Scholar
  9. 9.
    Lopez-Rubio, E., Restoration of images corrupted by Gaussian and uniform impulsive noise. Pattern Recogn. 43(5):1835–1846, 2010.CrossRefGoogle Scholar
  10. 10.
    Yang, L., Parton, R., Ball, G., Qiu, Z., Greenaway, A., Davis, I., and Lu, W., An adaptive non-local means filter for denoising live-cell images and improving particle detection. J. Struct. Biol. 172(3):233–243, 2010.CrossRefGoogle Scholar
  11. 11.
    Lin, T.-C., Decision-based fuzzy image restoration for noise reduction based on evidence theory. Expert Syst. Appl. 38(7):8303–8310, 2011.CrossRefGoogle Scholar
  12. 12.
    Lee, C., Lee, C., and Kim, C.-S., An MMSE approach to nonlocal image denoising: Theory and practical implementation. J. Vis. Commun. Image Represent. 23(3):476–490, 2012.CrossRefGoogle Scholar
  13. 13.
    Zhang, H., Yang, J., Zhang, Y., and Huang, T. S., Image and Video Restorations via Nonlocal Kernel Regression. IEEE Transactions on Cybernetics 43(3):1035–1046, 2013.CrossRefGoogle Scholar
  14. 14.
    Wang, S., Xia, Y., and QiegenLiu, P. D., David Dagan Feng, and Jianhua Luo, Fenchel Duality Based Dictionary Learning for Restoration of Noisy Images. IEEE Trans. Image Process. 22(12):5214–5225, 2013.CrossRefGoogle Scholar
  15. 15.
    Dong, W., Zhang, L., Shi, G., and Li, X., Nonlocally Centralized Sparse Representation for Image Restoration. IEEE Trans. Image Process. 22(4):1620–1630, 2013.CrossRefGoogle Scholar
  16. 16.
    Rasti, B., Sveinsson, J. R., and Ulfarsson, M. O., Wavelet-Based Sparse Reduced-Rank Regression for Hyperspectral Image Restoration. IEEE Trans. Geosci. Remote Sens. 52(10):6688–6698, 2014.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringHindustan Institute of Technology and ScienceChennaiIndia
  2. 2.Department of Electronics and Communication EngineeringAdhiparasakthi Engineering CollegeMelmaruvathurIndia

Personalised recommendations