Real-Time Remote-Health Monitoring Systems: a Review on Patients Prioritisation for Multiple-Chronic Diseases, Taxonomy Analysis, Concerns and Solution Procedure

  • K. I. Mohammed
  • A. A. ZaidanEmail author
  • B. B. Zaidan
  • O. S. Albahri
  • M. A. Alsalem
  • A. S. Albahri
  • Ali Hadi
  • M. Hashim
Systems-Level Quality Improvement
Part of the following topical collections:
  1. Systems-Level Quality Improvement


Remotely monitoring a patient’s condition is a serious issue and must be addressed. Remote health monitoring systems (RHMS) in telemedicine refers to resources, strategies, methods and installations that enable doctors or other medical professionals to work remotely to consult, diagnose and treat patients. The goal of RHMS is to provide timely medical services at remote areas through telecommunication technologies. Through major advancements in technology, particularly in wireless networking, cloud computing and data storage, RHMS is becoming a feasible aspect of modern medicine. RHMS for the prioritisation of patients with multiple chronic diseases (MCDs) plays an important role in sustainably providing high-quality healthcare services. Further investigations are required to highlight the limitations of the prioritisation of patients with MCDs over a telemedicine environment. This study introduces a comprehensive and inclusive review on the prioritisation of patients with MCDs in telemedicine applications. Furthermore, it presents the challenges and open issues regarding patient prioritisation in telemedicine. The findings of this study are as follows: (1) The limitations and problems of existing patients’ prioritisation with MCDs are presented and emphasised. (2) Based on the analysis of the academic literature, an accurate solution for remote prioritisation in a large scale of patients with MCDs was not presented. (3) There is an essential need to produce a new multiple-criteria decision-making theory to address the current problems in the prioritisation of patients with MCDs.


Healthcare services Remote health monitoring system Sensor Priority Triage Chronic disease Multiple chronic diseases 



This study was funded by Universiti Pendidikan Sultan Idris, under grant FRGS/2016–0066–109-02.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants are in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. 1.
    Iqbal, S. et al., Real-time-based E-health systems: Design and implementation of a lightweight key management protocol for securing sensitive information of patients. Health Technol. (Berl). 9(2):93–111, 2019.CrossRefGoogle Scholar
  2. 2.
    Alanazi, H. O. et al., Meeting the security requirements of electronic medical records in the ERA of high-speed computing. J. Med. Syst. 39(1):165, 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Nabi, M. S. A. et al., Suitability of using SOAP protocol to secure electronic medical record databases transmission. Int. J. Pharmacol 6(6):959–964, 2010.CrossRefGoogle Scholar
  4. 4.
    Kiah, M. L. M. et al., An enhanced security solution for electronic medical records based on AES hybrid technique with SOAP/XML and SHA-1. J. Med. Syst. 37(5):9971, 2013.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Nabi, M. S. et al., Suitability of adopting S/MIME and OpenPGP email messages protocol to secure electronic medical records. In: Second international conference on future generation communication technologies (FGCT 2013), 2013, 93–97.CrossRefGoogle Scholar
  6. 6.
    Alanazi, H. O. et al., Securing electronic medical records transmissions over unsecured communications: An overview for better medical governance. Journal of Medicinal Plants Research 4(19):2059–2074, 2010.CrossRefGoogle Scholar
  7. 7.
    Nabi, M. S. A., Kiah, M. M., Zaidan, B. B., Zaidan, A. A., and Alam, G. M., Suitability of SOAP protocol in securing transmissions of EMR database. Int. J. Pharmacol 6(6):959–964, 2010.CrossRefGoogle Scholar
  8. 8.
    Rogove, H. J., McArthur, D., Demaerschalk, B. M., and Vespa, P. M., Barriers to telemedicine: Survey of current users in acute care units. Telemed. e-Health 18(1):48–53, 2012.CrossRefGoogle Scholar
  9. 9.
    Topol, E. J., The patient will see you now: The future of medicine is in your hands. In: Tantor Media, 2015.Google Scholar
  10. 10.
    Mohsin, A. et al., Based medical systems for patient’s authentication: Towards a new verification secure framework using CIA standard. J. Med. Syst., 2019.Google Scholar
  11. 11.
    Mohsin, A. H. et al., Real-time medical systems based on human biometric steganography: A systematic review. J. Med. Syst. 42(12):245, 2018.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Abdulnabi, M. et al., A distributed framework for health information exchange using smartphone technologies. J. Biomed. Inform. 69:230–250, 2017.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Zaidan, A. A. et al., Challenges, alternatives, and paths to sustainability: Better public health promotion using social networking pages as key tools. J. Med. Syst. 39(2):7, Feb. 2015.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Zaidan, B. B. et al., A security framework for nationwide health information exchange based on telehealth strategy. J. Med. Syst. 39(5):51, 2015.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Doumbouya, M. B., Kamsu-Foguem, B., Kenfack, H., and Foguem, C., A framework for decision making on teleexpertise with traceability of the reasoning. Irbm 36(1):40–51, Feb. 2015.CrossRefGoogle Scholar
  16. 16.
    Mohsin, A. et al., Real-time remote health monitoring systems using body sensor information and finger vein biometric verification: A multi-layer systematic review. J. Med. Syst., 2018.Google Scholar
  17. 17.
    Hussain, M. et al., The landscape of research on smartphone medical apps: Coherent taxonomy, motivations, open challenges and recommendations. Comput. methods programs Biomed., 2015.Google Scholar
  18. 18.
    Zaidan, B. B. et al., Impact of data privacy and confidentiality on developing telemedicine applications: A review participates opinion and expert concerns. Int. J. Pharmacol 7(3):382–387, 2011.CrossRefGoogle Scholar
  19. 19.
    Gilpin, R., and Gilpin, J. M., The challenge of global capitalism: The world economy in the 21st century. Vol. 5. Princeton, NJ: Princeton University Press, 2000.CrossRefGoogle Scholar
  20. 20.
    Kiah, M. L. M. et al., MIRASS: Medical informatics research activity support system using information mashup network. Journal of medical systems 38(4):37, 2014.PubMedCrossRefGoogle Scholar
  21. 21.
    Kiah, M. M. et al., Design and develop a video conferencing framework for real-time telemedicine applications using secure group-based communication architecture. J. Med. Syst., 2014.Google Scholar
  22. 22.
    Kiah, M. L. M. et al., Open source EMR software: Profiling, insights and hands-on analysis. Comput. Methods Programs Biomed. 117(2):360–382, 2014.PubMedCrossRefGoogle Scholar
  23. 23.
    Salman, O. H., Rasid, M. F. A., Saripan, M. I., and Subramaniam, S. K., Multi-sources data fusion framework for remote triage prioritization in telehealth. J. Med. Syst. 38(9):103, Sep. 2014.PubMedCrossRefGoogle Scholar
  24. 24.
    Albahri, O. S. et al., Systematic review of real-time remote health monitoring system in triage and priority-based sensor technology: Taxonomy, open challenges, motivation and recommendations. J. Med. Syst. 42(5):80, May 2018.PubMedCrossRefGoogle Scholar
  25. 25.
    Salman, O. H. et al., Novel methodology for triage and prioritizing using ‘big data’ patients with chronic heart diseases through telemedicine environmental. Int. J. Inf. Technol. Decis. Mak. 16(05):1211–1245, Sep. 2017.CrossRefGoogle Scholar
  26. 26.
    Kalid, N. et al., Based on real time remote health monitoring systems: A new approach for prioritization ‘large scales data’ patients with chronic heart diseases using body sensors and communication technology. J. Med. Syst. 42(4):69, Apr. 2018.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Albahri, O. S. et al., Fault-tolerant mHealth framework in the context of IoT-based real-time wearable health data sensors. IEEE Access 7:50052–50080, 2019.CrossRefGoogle Scholar
  28. 28.
    Seising, R., and Tabacchi, M., Fuzziness and Medicine: Philosophical Reflections and Application Systems in Health Care, vol. 302. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.CrossRefGoogle Scholar
  29. 29.
    Albahri, A. S. et al., Based multiple heterogeneous wearable sensors: A smart real-time health monitoring structured for hospitals distributor. IEEE Access 7:37269–37323, 2019.CrossRefGoogle Scholar
  30. 30.
    Acampora, G., Cook, D. J., Rashidi, P., and Vasilakos, A. V., A survey on ambient intelligence in health care. Proc. IEEE. Inst. Electr. Electron. Eng. 101(12):2470–2494, 2013.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Rocha, A. et al., Innovations in health care services: The CAALYX system. Int. J. Med. Inform. 82(11):e307–e320, Nov. 2013.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Shuwandy, M. L. et al., Sensor-based mHealth authentication for real-time remote healthcare monitoring system: A multilayer systematic review. J. Med. Syst., 2019.Google Scholar
  33. 33.
    Mohsin, A. et al., Based Blockchain-PSO-AES techniques in finger vein biometrics: A novel verification secure framework for patient authentication. Comput. Stand. Interfaces., 2019.Google Scholar
  34. 34.
    Talal, M. et al., Smart home-based IoT for real-time and secure remote health monitoring of triage and priority system using body sensors: Multi-driven systematic review. J. Med. Syst., 2019.Google Scholar
  35. 35.
    Brown, A. M., and Clarke, D. E., Reducing uncertainty in triaging mental health presentations: Examining triage decision-making. Int. Emerg. Nurs. 22(1):47–51, 2014.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Román, R. et al., Geographical variations in the benefit of applying a prioritization system for cataract surgery in different regions of Spain. BMC Health Serv. Res. 8:1–10, 2008.CrossRefGoogle Scholar
  37. 37.
    Tebé, C., Comas, M., Adam, P., Solans-Domènech, M., Allepuz, A., and Espallargues, M., Impact of a priority system on patients in waiting lists for knee arthroplasty. J. Eval. Clin. Pract. 21(1):91–96, 2015.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Polk, T. W., Walker, W. P., and Bhatia, D. K., A wireless telemedicine system with extended reporting range and priority messaging. IEEE Dallas Engineering in Medicine and Biology Workshop, DEMBS.:138–141, 2007, 2007.Google Scholar
  39. 39.
    Salman, O. H., Rasid, M. F. A., Saripan, M. I., and Subramaniam, S. K., Multi-sources data fusion framework for remote triage prioritization in telehealth. J. Med. Syst. 38(9):103, Sep. 2014.PubMedCrossRefGoogle Scholar
  40. 40.
    T. H. Sanders, A. Devergnas, T. Wichmann, and M. A. Clements, “Remote smartphone monitoring for management of Parkinson’s Disease,” in Proceedings of the 6th International Conference on PErvasive Technologies Related to Assistive Environments, 2013, p. 42.Google Scholar
  41. 41.
    Sakanushi, K. et al., Electronic triage system for continuously monitoring casualties at disaster scenes. J. Ambient Intell. Humaniz. Comput. 4(5):547–558, 2013.CrossRefGoogle Scholar
  42. 42.
    Mirkovic, J., Bryhni, H., and Ruland, C., A framework for the development of ubiquitous patient support systems. In: Proceedings of the 6th international conference on pervasive computing Technologies for Healthcare, 2012, 81–88.Google Scholar
  43. 43.
    Sarkar, P., and Sinha, D., An approach to continuous pervasive Care of Remote Patients Based on priority based assignment of nurse. Lncs 8838:327–338, 2014.Google Scholar
  44. 44.
    U. S. D. of H. and H. Services, “Multiple chronic conditions—A strategic framework: Optimum health and quality of life for individuals with multiple chronic conditions,” Washington, DC US Dep. Heal. Hum. Serv., vol.:2, 2010.Google Scholar
  45. 45.
    Kalid, N. et al., Based real time remote health monitoring systems: A review on patients prioritization and related ‘big data’ using body sensors information and communication technology. J. Med. Syst. 42(2):30, Feb. 2018.CrossRefGoogle Scholar
  46. 46.
    Alsalem, M. A. et al., A review of the automated detection and classification of acute leukaemia: Coherent taxonomy, datasets, validation and performance measurements, motivation, open challenges and recommendations. Comput. Methods Programs Biomed. 158:93–112, May 2018.PubMedCrossRefGoogle Scholar
  47. 47.
    Zughoul, O. et al., Comprehensive insights into the criteria of student performance in various educational domains. IEEE Access., 2018.Google Scholar
  48. 48.
    Mohsin, A. et al., Blockchain authentication of network applications: Taxonomy, classification, capabilities, open challenges, motivations, recommendations and future directions. Comput. Stand. Interfaces., 2019.Google Scholar
  49. 49.
    Talal, M. et al., Comprehensive review and analysis of anti-malware apps for smartphones. Telecommun. Syst., 2019.Google Scholar
  50. 50.
    Alaa, M. et al., A review of smart home applications based on internet of things. J. Netw. Comput. Appl., 2017.Google Scholar
  51. 51.
    Zaidan, A. A. et al., A survey on communication components for IoT-based technologies in smart homes. Telecommunication Systems:1–25, Mar-2018.CrossRefGoogle Scholar
  52. 52.
    Zaidan, A. et al., A review on intelligent process for smart home applications based on IoT: Coherent taxonomy, motivation, open challenges, and recommendations. Artif. Intell. Rev., 2018.Google Scholar
  53. 53.
    Yas, Q. M., Zaidan, A. A., Zaidan, B. B., Hashim, M., and Lim, C. K., A systematic review on smartphone skin cancer apps: Coherent taxonomy, motivations, open challenges and recommendations, and new research direction. Journal of Circuits, Systems and Computers 27(05):1830003, 2018.CrossRefGoogle Scholar
  54. 54.
    Bradai, N., and Charfi, E., L. C. Fourati, and L. Kamoun, “Priority consideration in inter-WBAN data scheduling,” no. 2016:589–600, November 2015.Google Scholar
  55. 55.
    Villalonga, C., Pomares, H., Rojas, I., and Banos, O., MIMU-Wear: Ontology-based sensor selection for real-world wearable activity recognition. Neurocomputing 250 no. 2017, pp. 76–100, Aug. 2017.CrossRefGoogle Scholar
  56. 56.
    Ghanavati, S., Abawajy, J., and Izadi, D., A congestion control scheme based on fuzzy logic in wireless body area networks. pp.:235–242, 2015.Google Scholar
  57. 57.
    Ghanavati, S., Abawajy, J., and Izadi, D., ECG rate control scheme in pervasive health care monitoring system. pp.:2265–2270, 2016.Google Scholar
  58. 58.
    Rezaee, A. A., Yaghmaee, M. H., and Rahmani, A. M., Optimized congestion management protocol for healthcare wireless sensor networks. Wirel. Pers. Commun. 75(1):11–34, 2014.CrossRefGoogle Scholar
  59. 59.
    Rezaee, A. A., Yaghmaee, M. H., Rahmani, A. M., and Mohajerzadeh, A. H., HOCA: Healthcare aware optimized congestion avoidance and control protocol for wireless sensor networks. J. Netw. Comput. Appl. 37:216–228, 2014.CrossRefGoogle Scholar
  60. 60.
    Almadani, B., Saeed, B., and Alroubaiy, A., Healthcare systems integration using real time publish. Comput. Electr. Eng. 50:67–78, 2016.CrossRefGoogle Scholar
  61. 61.
    Claudio, D., Kremer, G. E. O., Bravo-Llerena, W., and Freivalds, A., A dynamic multi-attribute utility theory-based decision support system for patient prioritization in the emergency department. IIE Trans. Healthc. Syst. Eng. 4(1):1–15, 2014.CrossRefGoogle Scholar
  62. 62.
    S. Gambhir, DWBAN : Dynamic priority based WBAN architecture for healthcare system, pp. 0–6, 2016.Google Scholar
  63. 63.
    Zhao, Y., and Kerkhoff, H. G., Design of an Embedded Health Monitoring Infrastructure for accessing multi-processor SoC degradation. pp.:154–160, 2014.Google Scholar
  64. 64.
    Shah, M. A., Kim, J., Khadra, M. H., Feng, D., and Fellow, I., Home area network for optimizing telehealth services- empirical simulation analysis. pp.:1370–1373, 2014.Google Scholar
  65. 65.
    Lin, D. et al., Admission control over internet of vehicles attached with medical sensors for ubiquitous healthcare applications. IEEE J. Biomed. Heal. INFORMATICS 20(4):1195–1204, 2016.CrossRefGoogle Scholar
  66. 66.
    Hu, L., Zhang, Y., Feng, D., Mehedi, M., Alelaiwi, A., and Alamri, A., Design of QoS-aware multi-level MAC-layer for wireless body area network. J. Med. Syst., 2015.Google Scholar
  67. 67.
    Iftikhar, M., and Ahmad, I., A novel analytical model for provisioning QoS in body area sensor networks. Procedia - Procedia Comput. Sci. 32:900–907, 2014.CrossRefGoogle Scholar
  68. 68.
    Iftikhar, M., Al Elaiwi, N., and Aksoy, M. S., The 2 nd international workshop on communications and sensor networks performance analysis of priority queuing model for low power wireless body area networks ( WBANs ). Procedia - Procedia Comput. Sci. 34:518–525, 2014.CrossRefGoogle Scholar
  69. 69.
    Sevin, A., C. Bayilmis, and I. Kirbas, “cross-layer medium access protocol for wireless body area,” 000:1–12, 2016.Google Scholar
  70. 70.
    Chiang, H.-P., Lai, C.-F., and Huang, Y.-M., A green cloud-assisted health monitoring service on wireless body area networks. Inf. Sci. (Ny). 284:118–129, Nov. 2014.CrossRefGoogle Scholar
  71. 71.
    Baehr, D., Mckinney, S., Quirk, A., and Harfoush, K., On the practicality of elliptic curve cryptography for medical sensor networks. pp.:41–45, 2014.Google Scholar
  72. 72.
    De, A., Braeken, A., Touhafi, A., and Wouters, K., Secure event logging in sensor networks. Comput. Math. with Appl. 65(5):762–773, 2013.CrossRefGoogle Scholar
  73. 73.
    Hedin, D. S., Member, S., Kollmann, D. T., Gibson, P. L., Riehle, T. H., and Seifert, G. J., Distance bounded energy detecting ultra-wideband impulse radio secure protocol. pp.:6619–6622, 2014.Google Scholar
  74. 74.
    Soufiene, B. O., Bahattab, A. A., Trad, A., and Youssef, H., Lightweight and confidential data aggregation in healthcare wireless sensor networks. no. November:576–588, 2016, 2015.CrossRefGoogle Scholar
  75. 75.
    Rubio, Ó. J., Trigo, J. D., and Alesanco, Á., L. Serrano, and. J. García, “Analysis of ISO / IEEE 11073 built-in security and its potential IHE-based extensibility,” 60:270–285, 2016.Google Scholar
  76. 76.
    T. Benmansour, T. Ahmed, and S. Moussaoui, “Performance Evaluation of IEEE 802 . 15 . 6 MAC in monitoring of a cardiac patient,” 2016.Google Scholar
  77. 77.
    Fourati, H., Idoudi, H., Val, T., Van Den Bossche, A., and Saidane, L. A., Performance evaluation of IEEE 802.15.6 CSMA/CA-based CANet WBAN. In: 2015 IEEE/ACS 12th international conference of computer systems and applications (AICCSA), 2015, 1–7.Google Scholar
  78. 78.
    Radhakrishnan, S., Duvvuru, A., and Kamarthi, S. V., Investigating discrete event simulation method to assess the effectiveness of wearable health monitoring devices. Procedia Econ. Financ. 11:838–856, 2014.CrossRefGoogle Scholar
  79. 79.
    Meizoso, J. P. et al., Evaluation of miniature wireless vital signs monitor in a trauma intensive care unit. Mil. Med. 181(c):199–204, 2017.Google Scholar
  80. 80.
    Ru Kong, C., and Chen, W. Y., B. Yang, and X. Guan, “Data priority based slot allocation for Wireless Body Area Networks,” in 2013 International Conference on Wireless Communications and Signal Processing:1–6, 2013.Google Scholar
  81. 81.
    Misra, S., and Sarkar, S., Priority-based time-slot allocation in wireless body area networks during medical emergency situations: An evolutionary game-theoretic perspective. IEEE J. Biomed. Heal. Informatics 19(2):541–548, Mar. 2015.CrossRefGoogle Scholar
  82. 82.
    Puri, T., Energy efficient QoS aware MAC layer time slot allocation scheme for WBASN. pp.:966–972, 2015.Google Scholar
  83. 83.
    Ben, H. et al., A priority based cross layer routing protocol for healthcare applications. Ad Hoc Networks 42:1–18, 2015.Google Scholar
  84. 84.
    Bradai, N., L. C. Fourati, and L. Kamoun, “Ad Hoc Networks WBAN data scheduling and aggregation under WBAN / WLAN healthcare network,” 25:251–262, 2015.Google Scholar
  85. 85.
    Gündoğdu, K., and Çalhan, A., An implementation of wireless body area networks for improving priority data transmission delay. J. Med. Syst. 40(3):75, Mar. 2016.PubMedCrossRefGoogle Scholar
  86. 86.
    Kaur, J., and Scholar, P. G., Priority based congestion avoidance hybrid scheme for wireless sensor network, no. September, pp., 2015, 4–5.Google Scholar
  87. 87.
    Kim, R. H., and Kim, P. S., An effect of delay reduced MAC protocol for WBAN based medical signal monitoring. pp.:434–437, 2015.Google Scholar
  88. 88.
    Ahmed, A., and Al Mamoon, I., Architecture and communication protocols for cognitive radio network enabled hospital. pp.:170–174, 2015.Google Scholar
  89. 89.
    Rezvani, S., A. Ghorashi, “context aware and channel-based resource allocation for wireless body area networks,” vol. 3, no. 2013:16–25, November 2012.Google Scholar
  90. 90.
    Ren, J., Wu, G., Li, X., Pirozmand, P., and Obaidat, M. S., Probabilistic response-time analysis for real-time systems in body area sensor networks, no. may, pp., 2015, 2145–2166.Google Scholar
  91. 91.
    Hussain, M. et al., Conceptual framework for the security of mobile health applications on android platform. Telematics and Informatics, Mar-2018.Google Scholar
  92. 92.
    Hussain, M., A security framework for mHealth apps on android platform. Comput. Secur., 2018.Google Scholar
  93. 93.
    Alnanih, R., Ormandjieva, O., and Radhakrishnan, T., Context-based and rule-based adaptation of Mobile user interfaces in mHealth. Procedia Comput. Sci. 21:390–397, 2013.CrossRefGoogle Scholar
  94. 94.
    Fratini, A., and Caleffi, M., Telematics and informatics medical emergency alarm dissemination in urban environments. Telemat. Informatics 31(3):511–517, 2014.CrossRefGoogle Scholar
  95. 95.
    O. Boursalie, R. Samavi, and T. E. Doyle, M4CVD: Mobile machine learning model for monitoring cardiovascular disease, Procedia Comput. Sci., vol. 63, no. Icth, pp. 384–391, 2015.Google Scholar
  96. 96.
    M. Fezari, R. Rasras, and I. M. M. El Emary, Ambulatory health monitoring system using wireless sensors node, Procedia Comput. Sci., vol. 65, no. Iccmit, pp. 86–94, 2015.Google Scholar
  97. 97.
    Villarreal, V., Fontecha, J., Hervas, R., and Bravo, J., Mobile and ubiquitous architecture for the medical control of chronic diseases through the use of intelligent devices: Using the architecture for patients with diabetes. Futur. Gener. Comput. Syst. 34:161–175, May 2014.CrossRefGoogle Scholar
  98. 98.
    Sebillo, M., Tortora, G., Tucci, M., Vitiello, G., Ginige, A., and Di Giovanni, P., Combining personal diaries with territorial intelligence to empower diabetic patients. J. Vis. Lang. Comput. 29:1–14, Aug. 2015.CrossRefGoogle Scholar
  99. 99.
    Katib, A., Rao, D., Rao, P., Williams, K., and Grant, J., A prototype of a novel cell phone application for tracking the vaccination coverage of children in rural communities. Comput. Methods Programs Biomed. 122(2):215–228, Nov. 2015.PubMedCrossRefGoogle Scholar
  100. 100.
    Lwin, M. O. et al., A 21st century approach to tackling dengue: Crowdsourced surveillance, predictive mapping and tailored communication. Acta Trop. 130(1):100–107, Feb. 2014.PubMedCrossRefGoogle Scholar
  101. 101.
    Bresó, A., Martínez-Miranda, J., Fuster-García, E., and García-Gómez, J. M., A novel approach to improve the planning of adaptive and interactive sessions for the treatment of major depression. Int. J. Hum. Comput. Stud. 87:80–91, Mar. 2016.CrossRefGoogle Scholar
  102. 102.
    Chakraborty, S., Ghosh, S. K., Jamthe, A., and Agrawala, D. P., Detecting mobility for monitoring patients with Parkinson’s disease at home using RSSI in a wireless sensor network. Procedia Comput. Sci. 19:956–961, 2013.CrossRefGoogle Scholar
  103. 103.
    Hermens, H., op den Akker, H., Tabak, M., Wijsman, J., and Vollenbroek, M., Personalized coaching systems to support healthy behavior in people with chronic conditions. J. Electromyogr. Kinesiol. 24(6):815–826, Dec. 2014.PubMedCrossRefGoogle Scholar
  104. 104.
    S. Piotin, A. Benassarou, F. Blanchard, O. Nocent, and E. Bertin, “Abdominal morphometric data acquisition using depth sensors,” in 2013 IEEE 15th International Conference on e-Health Networking, Applications and Services (Healthcom 2013), 2013, no. Healthcom, pp. 653–657.Google Scholar
  105. 105.
    Adibi, S., A mobile health network disaster management system. In: 2015 seventh international conference on ubiquitous and future networks, 2015, 424–428.CrossRefGoogle Scholar
  106. 106.
    Beck, C., and Georgiou, J., Wearable, multimodal, vitals acquisition unit for intelligent field triage. Healthc. Technol. Lett. 3(3):189–196, Sep. 2016.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Besaleva, L. I., and Weaver, A. C., Mobile electronic triaging for emergency response improvement through crowdsourced and sensor-detected information. In: Proceedings of the 2013 IEEE/ACM international conference on advances in social networks analysis and mining - ASONAM ‘13, 2013, 1092–1093.Google Scholar
  108. 108.
    Ganz, A., Schafer, J. M., Tang, J., Yang, Z., Yi, J., and Ciottone, G., Urban search and rescue situational awareness using DIORAMA disaster management system. Procedia Eng. 107:349–356, 2015.CrossRefGoogle Scholar
  109. 109.
    Gunasekaran, S., and Suresh, M., A novel control of disaster protection (NCDP) for pilgrims by pan technology. In: 2014 IEEE 8th international conference on intelligent systems and control (ISCO), 2014, 103–107.CrossRefGoogle Scholar
  110. 110.
    A. Renner et al., “RIPPLE: Scalable medical telemetry system for supporting combat rescue,” in NAECON 2014 - IEEE National Aerospace and Electronics Conference, 2014, vol. 2015–Febru, pp. 228–232.Google Scholar
  111. 111.
    Ali, R. et al., GUDM: Automatic generation of unified datasets for learning and reasoning in healthcare. Sensors 15(12):15772–15798, Jul. 2015.PubMedCrossRefGoogle Scholar
  112. 112.
    Gaynor, M., and Waterman, J., Design framework for sensors and RFID tags with healthcare applications. Heal. Policy Technol. 5(4):357–369, Dec. 2016.CrossRefGoogle Scholar
  113. 113.
    Kim, H.-K., Convergence agent model for developing u-healthcare systems. Futur. Gener. Comput. Syst. 35:39–48, Jun. 2014.CrossRefGoogle Scholar
  114. 114.
    Misra, S., and Chatterjee, S., Social choice considerations in cloud-assisted WBAN architecture for post-disaster healthcare: Data aggregation and channelization. Inf. Sci. (Ny). 284:95–117, Nov. 2014.CrossRefGoogle Scholar
  115. 115.
    Zhang, K., Liang, X., Baura, M., Lu, R., and Shen, X. S., PHDA: A priority based health data aggregation with privacy preservation for cloud assisted WBANs. Inf. Sci. (Ny) 284:130–141, Nov. 2014.CrossRefGoogle Scholar
  116. 116.
    Yi, C., Zhao, Z., Cai, J., Lobato de Faria, R., and Zhang, G. M., Priority-aware pricing-based capacity sharing scheme for beyond-wireless body area networks. Comput. Networks 98:29–43, Apr. 2016.CrossRefGoogle Scholar
  117. 117.
    Yi, C., Alfa, A. S., and Cai, J., An incentive-compatible mechanism for transmission scheduling of delay-sensitive medical packets in E-health networks. IEEE Trans. Mob. Comput. 15(10):2424–2436, 2016.CrossRefGoogle Scholar
  118. 118.
    Zhang Yi et al., “Emergency treatment in smart terminal-based e-healthcare networks,” in 2015 4th International Conference on Computer Science and Network Technology (ICCSNT), 2015, no. Iccsnt, pp. 1178–1181.Google Scholar
  119. 119.
    Sneha, S., and Varshney, U., A framework for enabling patient monitoring via mobile ad hoc network. Decis. Support Syst. 55(1):218–234, Apr. 2013.CrossRefGoogle Scholar
  120. 120.
    Bouakaz, S. et al., CIRDO: Smart companion for helping elderly to live at home for longer. IRBM 35(2):100–108, Apr. 2014.CrossRefGoogle Scholar
  121. 121.
    De Backere, F., Bonte, P., Verstichel, S., Ongenae, F., and De Turck, F., The OCarePlatform: A context-aware system to support independent living. Comput. Methods Programs Biomed. 140:111–120, Mar. 2017.PubMedCrossRefGoogle Scholar
  122. 122.
    Kormanyos, B., and Pataki, B., Multilevel simulation of daily activities: Why and how? In: 2013 IEEE international conference on computational intelligence and virtual environments for measurement systems and applications (CIVEMSA), 2013, 1–6.Google Scholar
  123. 123.
    Rahmani, A. M. et al., Exploiting smart e-health gateways at the edge of healthcare internet-of-things: A fog computing approach. Futur. Gener. Comput. Syst. 78:641–658, Jan. 2018.CrossRefGoogle Scholar
  124. 124.
    Varshney, U., A model for improving quality of decisions in mobile health. Decis. Support Syst. 62:66–77, Jun. 2014.CrossRefGoogle Scholar
  125. 125.
    Minutolo, A., Esposito, M., and De Pietro, G., Design and validation of a light-weight reasoning system to support remote health monitoring applications. Eng. Appl. Artif. Intell. 41:232–248, May 2015.CrossRefGoogle Scholar
  126. 126.
    Ahsanul, S., and Mahfuzul, S., False alarm detection in cyber-physical Systems for Healthcare Applications. AASRI Procedia 5:54–61, 2013.CrossRefGoogle Scholar
  127. 127.
    N. Pombo, N. Garcia, V. Felizardo, and K. Bousson, “Big data reduction using RBFNN: A predictive model for ECG waveform for eHealth platform integration,” in 2014 IEEE 16th International Conference on e-Health Networking, Applications and Services (Healthcom), 2014, no. Ssh, pp. 66–70.Google Scholar
  128. 128.
    Sakr, S., and Elgammal, A., Towards a comprehensive data analytics framework for smart healthcare services. Big Data Res. 4(May):44–58, Jun. 2016.CrossRefGoogle Scholar
  129. 129.
    Moutacalli, M. T., Marmen, V., Bouzouane, A., and Bouchard, B., Activity pattern mining using temporal relationships in a smart home. In: 2013 IEEE symposium on computational intelligence in healthcare and e-health (CICARE), 2013, 83–87.CrossRefGoogle Scholar
  130. 130.
    Bharatula, S., and Meenakshi, M., Design of Cognitive Radio Network for hospital management system. Wirel. Pers. Commun. 90(2):1021–1038, Sep. 2016.CrossRefGoogle Scholar
  131. 131.
    V. Vaidehi, M. Vardhini, H. Yogeshwaran, G. Inbasagar, R. Bhargavi, and C. Sweetlin Hemalatha, “Agent based health monitoring of elderly people in indoor environments using wireless sensor networks,” Procedia Comput. Sci., vol. 19, no. Ant, pp. 64–71, 2013.Google Scholar
  132. 132.
    Ben Othman, S., Zgaya, H., Hammadi, S., Quilliot, A., Martinot, A., and Renard, J.-M., Agents endowed with uncertainty management behaviors to solve a multiskill healthcare task scheduling. J. Biomed. Inform. 64:25–43, Dec. 2016.PubMedCrossRefGoogle Scholar
  133. 133.
    Peleg, M. et al., Assessment of a personalized and distributed patient guidance system. Int. J. Med. Inform. 101:108–130, May 2017.PubMedCrossRefGoogle Scholar
  134. 134.
    Tawfik, H., and Anya, O., Evaluating practice-centered awareness in cross-boundary telehealth decision support systems. Telemat. Informatics 32(3):486–503, Aug. 2015.CrossRefGoogle Scholar
  135. 135.
    Tamura, T. et al., Assessment of participant compliance with a web-based home healthcare system for promoting specific health checkups. Biocybern. Biomed. Eng. 34(1):63–69, 2014.CrossRefGoogle Scholar
  136. 136.
    Lounis, A., Hadjidj, A., Bouabdallah, A., and Challal, Y., Healing on the cloud: Secure cloud architecture for medical wireless sensor networks. Futur. Gener. Comput. Syst. 55:266–277, Feb. 2016.CrossRefGoogle Scholar
  137. 137.
    Saleem, K., Derhab, A., Al-Muhtadi, J., and Shahzad, B., Human-oriented design of secure machine-to-machine communication system for e-healthcare society. Comput. Human Behav. 51:977–985, Oct. 2015.CrossRefGoogle Scholar
  138. 138.
    Wang, J., Qiu, M., and Guo, B., Enabling real-time information service on telehealth system over cloud-based big data platform. J. Syst. Archit. 72:69–79, Jan. 2017.CrossRefGoogle Scholar
  139. 139.
    Nageba, E., Rubel, P., and Fayn, J., Towards an intelligent exploitation of heterogeneous and distributed resources in cooperative environments of eHealth. IRBM 34(1):79–85, Feb. 2013.CrossRefGoogle Scholar
  140. 140.
    Sene, A., Kamsu-Foguem, B., and Rumeau, P., Telemedicine framework using case-based reasoning with evidences. Comput. Methods Programs Biomed. 121(1):21–35, Aug. 2015.PubMedCrossRefGoogle Scholar
  141. 141.
    Doumbouya, M. B., Kamsu-Foguem, B., Kenfack, H., and Foguem, C., Telemedicine using mobile telecommunication: Towards syntactic interoperability in teleexpertise. Telemat. Informatics 31(4):648–659, Nov. 2014.CrossRefGoogle Scholar
  142. 142.
    Urovi, V., Jimenez-del-Toro, O., Dubosson, F., Ruiz Torres, A., and Schumacher, M. I., COMPOSE: Using temporal patterns for interpreting wearable sensor data with computer interpretable guidelines. Comput. Biol. Med. 81:24–31, Feb. 2017.PubMedCrossRefGoogle Scholar
  143. 143.
    Tegegne, T., and van der Weide, T. P. T., Enriching queries with user preferences in healthcare. Inf. Process. Manag. 50(4):599–620, Jul. 2014.CrossRefGoogle Scholar
  144. 144.
    Moreno, S., Quintero, A., Ochoa, C., Bonfante, M., Villareal, R., and Pestana, J., Remote monitoring system of vital signs for triage and detection of anomalous patient states in the emergency room. In: 2016 XXI symposium on signal processing, images and artificial vision (STSIVA), 2016, 1–5.Google Scholar
  145. 145.
    Dos Santos, J. R. B., Blard, G., Oliveira, A. S. R., and De Carvalho, N. B., Wireless sensor tag and network for improved clinical triage. In: 2015 Euromicro conference on digital system design, 2015, 399–406.CrossRefGoogle Scholar
  146. 146.
    Niswar, M. et al., Performance evaluation of ZigBee-based wireless sensor network for monitoring patients’ pulse status. In: 2013 international conference on information technology and electrical engineering (ICITEE), 2013, 291–294.CrossRefGoogle Scholar
  147. 147.
    Niswar, M. et al., The design of wearable medical device for triaging disaster casualties in developing countries. In: 2015 fifth international conference on digital information processing and communications (ICDIPC), 2015, 207–212.CrossRefGoogle Scholar
  148. 148.
    Paulus, A., Czaplik, M., Hirsch, F., Meisen, P., Meisen, T., and Jeschke, S., AUDIME: Augmented disaster medicine. In: Automation, communication and cybernetics in science and engineering 2015/2016. Cham: Springer International Publishing, 2016, 637–644.CrossRefGoogle Scholar
  149. 149.
    F. Ullah, A. Khelil, A. A. Sheikh, E. Felemban, and H. M. A. Bojan, “Towards automated self-tagging in emergency health cases,” in 2013 IEEE 15th International Conference on e-Health Networking, Applications and Services (Healthcom 2013), 2013, no. Healthcom, pp. 658–663.Google Scholar
  150. 150.
    Rodriguez, D., Heuer, S., Guerra, A., Stork, W., Weber, B., and Eichler, M., Towards automatic sensor-based triage for individual remote monitoring during mass casualty incidents. In: 2014 IEEE international conference on bioinformatics and biomedicine (BIBM), 2014, 544–551.CrossRefGoogle Scholar
  151. 151.
    J. Gómez, B. Oviedo, and E. Zhuma, “Patient monitoring system based on internet of things,” Procedia Comput. Sci., vol. 83, no. Ant, pp. 90–97, 2016.Google Scholar
  152. 152.
    Hussain, A., Wenbi, R., da Silva, A. L., Nadher, M., and Mudhish, M., Health and emergency-care platform for the elderly and disabled people in the Smart City. J. Syst. Softw. 110:253–263, Dec. 2015.CrossRefGoogle Scholar
  153. 153.
    Lamprinakos, G. C. et al., An integrated remote monitoring platform towards telehealth and telecare services interoperability. Inf. Sci. (Ny). 308(March):23–37, Jul. 2015.Google Scholar
  154. 154.
    Sung, W.-T., and Chang, K.-Y., Health parameter monitoring via a novel wireless system. Appl. Soft Comput. 22:667–680, Sep. 2014.CrossRefGoogle Scholar
  155. 155.
    Zanjal, S. V., and Talmale, G. R., Medicine reminder and monitoring system for secure health using IOT. Procedia Comput. Sci. 78(December):471–476, 2016, 2015.Google Scholar
  156. 156.
    J. Mendes, H. Simões, P. Rosa, N. Costa, C. Rabadão, and A. Pereira, “Secure Low-cost Solution for Elder’s eCardio Surveillance,” Procedia Comput. Sci., vol. 27, no. Dsai 2013, pp. 46–56, 2014.CrossRefGoogle Scholar
  157. 157.
    AHMED, A., REBEIRO-HARGRAVE, A., NOHARA, Y., KAI, E., HOSSEIN RIPON, Z., and NAKASHIMA, N., Targeting morbidity in unreached communities using portable health clinic system. IEICE Trans. Commun. E97.B(3):540–545, 2014.CrossRefGoogle Scholar
  158. 158.
    Ganapathy, K., Priya, B., Priya, B., Dhivya, V. P., and Vaidehi, V., SOA framework for geriatric remote health care using wireless sensor network. Procedia Comput. Sci. 19(Fams):1012–1019, 2013.CrossRefGoogle Scholar
  159. 159.
    Miah, S. J., Hasan, J., and Gammack, J. G., On-cloud healthcare clinic: An e-health consultancy approach for remote communities in a developing country. Telemat. Informatics 34(1):311–322, Feb. 2017.CrossRefGoogle Scholar
  160. 160.
    P. Moore, A. Thomas, T. Qassem, N. Bessis, and B. Hu, “Monitoring Patients with Mental Disorders,” in 2015 9th International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing, 2015, pp. 65–70.Google Scholar
  161. 161.
    Traverso, G. et al., Physiologic status monitoring via the gastrointestinal tract. PLoS One 10(11):e0141666, Nov. 2015.PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Kovalchuk, S. V., Krotov, E., Smirnov, P. A., Nasonov, D. A., and Yakovlev, A. N., Distributed data-driven platform for urgent decision making in cardiological ambulance control. Futur. Gener. Comput. Syst. 79:144–154, Feb. 2018.CrossRefGoogle Scholar
  163. 163.
    Rajkumar, R., and Sriman Narayana Iyengar, N. C., Dynamic integration of Mobile JXTA with cloud computing for emergency rural public health care. Osong Public Heal. Res. Perspect. 4(5):255–264, Oct. 2013.CrossRefGoogle Scholar
  164. 164.
    Kumar, N., Kaur, K., Jindal, A., and Rodrigues, J. J. P. C., Providing healthcare services on-the-fly using multi-player cooperation game theory in internet of vehicles (IoV) environment. Digit. Commun. Networks 1(3):191–203, Aug. 2015.CrossRefGoogle Scholar
  165. 165.
    Moretti, S., Cicalò, S., Mazzotti, M., Tralli, V., and Chiani, M., Content/context-aware multiple camera selection and video adaptation for the support of m-health services. Procedia Comput. Sci. 40(C):206–213, 2014.CrossRefGoogle Scholar
  166. 166.
    Calyam, P. et al., Synchronous big data analytics for personalized and remote physical therapy. Pervasive Mob. Comput. 28:3–20, Jun. 2016.CrossRefGoogle Scholar
  167. 167.
    Teijeiro, T., Félix, P., Presedo, J., and Zamarrón, C., An open platform for the protocolization of home medical supervision. Expert Syst. Appl. 40(7):2607–2614, Jun. 2013.CrossRefGoogle Scholar
  168. 168.
    Hindia, M. N., Rahman, T. A., Ojukwu, H., Hanafi, E. B., and Fattouh, A., Enabling remote health-caring utilizing IoT concept over LTE-femtocell networks. PLoS One 11(5):e0155077, May 2016.PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Ganapathy, K., Vaidehi, V., Kannan, B., and Murugan, H., Hierarchical particle swarm optimization with Ortho-cyclic circles. Expert Syst. Appl. 41(7):3460–3476, Jun. 2014.CrossRefGoogle Scholar
  170. 170.
    M. Topaz, “Developing a tool to support decisions on patient prioritization at admission to home health care developing a tool to support decisions on patient prioritization at,” 2014.Google Scholar
  171. 171.
    World Health Assembly, Global action plan for the prevention and control of noncommunicable diseases, Geneva World Heal. Organ., 2013.Google Scholar
  172. 172.
    Jeong, S., Youn, C.-H., Shim, E. B., Kim, M., Cho, Y. M., and Peng, L., An integrated healthcare system for personalized chronic disease Care in Home–Hospital Environments. IEEE Trans. Inf. Technol. Biomed. 16(4):572–585, Jul. 2012.PubMedCrossRefGoogle Scholar
  173. 173.
    Van Dyk, L., A review of telehealth service implementation frameworks. Int. J. Environ. Res. Public Health 11(12):1279–1298, Jan. 2014.PubMedPubMedCentralGoogle Scholar
  174. 174.
    Mazomenos, E. B. et al., A low-complexity ECG feature extraction algorithm for mobile healthcare applications. IEEE J. Biomed. Heal. informatics 17(2):459–469, 2013.CrossRefGoogle Scholar
  175. 175.
    Wang, X., Gui, Q., Liu, B., Jin, Z., and Chen, Y., Enabling smart personalized healthcare: A hybrid mobile-cloud approach for ECG telemonitoring. IEEE J. Biomed. Heal. informatics 18(3):739–745, 2014.CrossRefGoogle Scholar
  176. 176.
    Barbera, J. A., and Macintyre, A. G., Medical surge capacity and capability : A management system for integrating medical and health resources during large-scale emergencies. Washington, DC: US Department of Health and Human Services, 2004.Google Scholar
  177. 177.
    Klimova, B., Mobile health devices for aging population groups : A review study, pp. 295–301, 2016.CrossRefGoogle Scholar
  178. 178.
    Chung, Y., and Liu, C., Design of a Wireless Sensor Network Platform for tele-homecare. pp.:17156–17175, 2013.PubMedCrossRefGoogle Scholar
  179. 179.
    Sun, J., and Guo, Y., X. Wang, and Q. Zeng, “mHealth For Aging China : Opportunities and Challenges,” 7(1):53–67, 2016.Google Scholar
  180. 180.
    O. Spending, “Trends in health care costs and Spending,” 2009.Google Scholar
  181. 181.
    Parekh, A. K., Goodman, R. A., Gordon, C., and Koh, H. K., Managing multiple chronic conditions: A strategic framework for improving health outcomes and quality of life. Public Health Rep. 126(4):460–471, 2011.PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Palozzi, G., Binci, D., and Appolloni, A., E-health and co-production: Critical drivers for chronic diseases management. In: Service Business Model Innovation in Healthcare and Hospital Management, springer, 2017, 269–296.CrossRefGoogle Scholar
  183. 183.
    Sparks, R., Celler, B., and Okugami, C., R. Jayasena, and M. Varnfield, “Telehealth Monitoring of Patients in the Community,” 25(1):37–53, 2016.Google Scholar
  184. 184.
    Touati, F., and Tabish, R., U-healthcare system: State-of-the-art review and challenges. J. Med. Syst. 37(3):9949, 2013.PubMedCrossRefGoogle Scholar
  185. 185.
    Shih, D.-H., Chiang, H.-S., Lin, B., and Lin, S.-B., An embedded mobile ECG reasoning system for elderly patients. IEEE Trans. Inf. Technol. Biomed. 14(3):854–865, 2010.PubMedCrossRefGoogle Scholar
  186. 186.
    V. Shnayder, B. Chen, K. Lorincz, T. R. F. Fulford-Jones, and M. Welsh, “Sensor networks for medical care,” 2005.Google Scholar
  187. 187.
    Ahn, J., Heo, J., Lim, S., Seo, J., and Kim, W., A study of healthcare system for patient location data based on LBS. In: Consumer electronics, 2008. ICCE 2008. Digest of technical papers. International conference on, 2008, 1–2.Google Scholar
  188. 188.
    MartíN-Campillo, A., Crowcroft, J., Yoneki, E., and Martí, R., Evaluating opportunistic networks in disaster scenarios. J. Netw. Comput. Appl. 36(2):870–880, 2013.CrossRefGoogle Scholar
  189. 189.
    Xiang, Y., and Zhuang, J., A medical resource allocation model for serving emergency victims with deteriorating health conditions. Ann. Oper. Res. 236(1):1–20, 2014.CrossRefGoogle Scholar
  190. 190.
    Wyte-Lake, T., Claver, M., and Dobalian, A., Assessing patients’ disaster preparedness in home-based primary care. Gerontology 62(3):263–274, 2016.PubMedCrossRefGoogle Scholar
  191. 191.
    R. D. Zane and P. Biddinger, Home Health Patient Assessment Tools: Preparing for Emergency Triage. Abt Associates, 2011.Google Scholar
  192. 192.
    Hansen, P., Hendry, A., Naden, R., Ombler, F., and Stewart, R., A new process for creating points systems for prioritising patients for elective health services. Clin. Gov. An Int. J. 17(3):200–209, 2012.CrossRefGoogle Scholar
  193. 193.
    Claudio, D., and Okudan, G. E., Utility function-based patient prioritisation in the emergency department. Eur. J. Ind. Eng. 4(1):59–77, 2010.CrossRefGoogle Scholar
  194. 194.
    K. W. Tan, K. W. Tan, and R. Kauffman, “Dynamic queue Management for Hospital Emergency Room Services Emergency Room Services,” 2013.Google Scholar
  195. 195.
    Nguyen, T., Khosravi, A., Creighton, D., and Nahavandi, S., Classification of healthcare data using genetic fuzzy logic system and wavelets. Expert Syst. Appl. 42(4):2184–2197, 2015.CrossRefGoogle Scholar
  196. 196.
    W. Mciver, J. Light, M. A. Chowdhury, W. M. Jr, and J. Light, Data association in remote health monitoring systems Data Association in Remote Health Monitoring Systems, no. June, 2012.Google Scholar
  197. 197.
    Patel, S., Park, H., Bonato, P., Chan, L., and Rodgers, M., A review of wearable sensors and systems with application in rehabilitation. J. Neuroeng. Rehabil. 9(1):21, 2012.PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    M. M. Baig and H. Gholamhosseini, “Smart health monitoring systems : An overview of design and modeling,” 2013.Google Scholar
  199. 199.
    Okura, T. et al., The importance of walking for control of blood pressure: Proof using a telemedicine system. Telemed. e-Health 22(12):1019–1023, 2016.CrossRefGoogle Scholar
  200. 200.
    Brunetti, N. D. et al., Telemedicine for cardiovascular disease continuum: A position paper from the Italian Society of Cardiology Working Group on Telecardiology and informatics. Int. J. Cardiol. 184:452–458, 2015.PubMedCrossRefGoogle Scholar
  201. 201.
    Winkler, S. et al., A new telemonitoring system intended for chronic heart failure patients using mobile telephone technology—Feasibility study. Int. J. Cardiol. 153(1):55–58, 2011.PubMedCrossRefGoogle Scholar
  202. 202.
    Alwan, A., Others, Global status report on noncommunicable diseases 2010. World Health Organization, 2011.Google Scholar
  203. 203.
    W. H. Organization and Others, Global Health Observatory data repository. Causes of death 2008, summary tables. In: Geneva: World Health Organization department of health statistics and informatics, 2008.Google Scholar
  204. 204.
    World Health Organization, World health day. BMJ 1(4815):882–882, Apr. 1953.Google Scholar
  205. 205.
    Malhotra, R., Chan, A., Malhotra, C., and Østbye, T., Prevalence, awareness, treatment and control of hypertension in the elderly population of Singapore. Hypertens. Res. 33(12):1223–1231, 2010.PubMedCrossRefGoogle Scholar
  206. 206.
    Áurea, R.-S., Pilar, G.-C., José, R. B., and Fernando, R.-A., Relationship between social network and hypertension in older people in Spain. Rev. Española Cardiol. 58(11):1294–1301, 2005.CrossRefGoogle Scholar
  207. 207.
    Czaja, S. J., Lee, C. C., Arana, N., Nair, S. N., and Sharit, J., Use of a telehealth system by older adults with hypertension. J. Telemed. Telecare 20(4):184–191, 2014.PubMedPubMedCentralCrossRefGoogle Scholar
  208. 208.
    Chan, M., Estève, D., Fourniols, J.-Y., Escriba, C., and Campo, E., Smart wearable systems: Current status and future challenges. Artif. Intell. Med. 56(3):137–156, 2012.PubMedCrossRefGoogle Scholar
  209. 209.
    A. T. Agrawal, “Home health monitoring: A review of recent advancements,” 2013.Google Scholar
  210. 210.
    Gao, T. et al., The advanced health and disaster aid network: A Light-weight wireless medical system for triage. IEEE Trans. Biomed. Circuits Syst. 1(3):203–216, 2007.CrossRefGoogle Scholar
  211. 211.
    Vogeli, C. et al., Multiple chronic conditions: Prevalence, health consequences, and implications for quality, care management, and costs. J. Gen. Intern. Med. 22(3):391–395, 2007.PubMedPubMedCentralCrossRefGoogle Scholar
  212. 212.
    Rocha, A. et al., Innovations in health care services : The CAALYX system. Int. J. Med. Inform.:1–14, 2011.Google Scholar
  213. 213.
    Rekha, R., Mathambigai, T. G., and Vidhyapriya, R., Secure medical data transmission in body area sensor networks using dynamic biometrics and steganography. Bonfring Int. J. Softw. Eng. soft Comput. 2(1):5, 2012.Google Scholar
  214. 214.
    Azeez, D., Ali, M. A. M., Gan, K. B., and Saiboon, I., Comparison of adaptive neuro-fuzzy inference system and artificial neutral networks model to categorize patients in the emergency department. Springerplus 2(1):416, 2013.PubMedPubMedCentralCrossRefGoogle Scholar
  215. 215.
    Brunetti, N. D., Dellegrottaglie, G., Di Giuseppe, G., Antonelli, G., and Di Biase, M., All for one, one for all: Remote telemedicine hub pre-hospital triage for public emergency medical service 1-1-8 in a regional network for primary PCI in Apulia, Italy. Eur. Res. Telemedicine/La Rech. Eur. en Telemed. 3(1):9–15, 2014.CrossRefGoogle Scholar
  216. 216.
    Merzougui, R., Adaptation of an intelligent Mobile assistant medical (IMAM) of the heterogeneous data for the telemedicine services: Design and implementation. Wirel. Pers. Commun. 84(4):3091–3107, 2015.CrossRefGoogle Scholar
  217. 217.
    et al Godfrey, B., Emergency Medical Guidelines, Third Edit., no. 3. Sunshine Act of Florida, 2000.Google Scholar
  218. 218.
    Ashour, O. M., and Okudan, G. E., Fuzzy AHP and utility theory based patient sorting in emergency departments. Int. J. Collab. Enterp. 1(3/4):332, 2010.Google Scholar
  219. 219.
    Westergren, H., Ferm, M., and Häggström, P., First evaluation of the paediatric version of the Swedish rapid emergency triage and treatment system shows good reliability. Acta Paediatr. Int. J. Paediatr. 103(3):305–308, 2014.CrossRefGoogle Scholar
  220. 220.
    Keeney, R. L., and Raiffa, H., Decisions with multiple objectives: Preferences and value trade-offs. Cambridge university press, 1993.Google Scholar
  221. 221.
    Belton, V., and Stewart, T. J., Multiple criteria decision analysis. Boston, MA: Springer US, 2002.CrossRefGoogle Scholar
  222. 222.
    Malczewski, J., GIS and multicriteria decision analysis. John Wiley & Sons, 1999.Google Scholar
  223. 223.
    Petrovic-Lazarevic, S., and Abraham, A., Hybrid fuzzy-linear programming approach for multi criteria decision making problems. Neural, Parallel Sci. Comput. 11(1 & 2):53–68, 2003.Google Scholar
  224. 224.
    Khatari, M. et al., Multi-criteria evaluation and benchmarking for active queue management methods: Open issues, challenges and recommended pathway solutions. Int. J. Inf. Technol. Decis. Making., 2019.Google Scholar
  225. 225.
    Zaidan, A. A. et al., Evaluation and selection of open-source EMR software packages based on integrated AHP and TOPSIS. J. Biomed. Inform. 53:390–404, 2015.CrossRefGoogle Scholar
  226. 226.
    Zaidan, A. A. et al., Multi-criteria analysis for OS-EMR software selection problem: A comparative study. Decis. Support Syst. 78:15–27, 2015.CrossRefGoogle Scholar
  227. 227.
    Zaidan, B. B. et al., A new digital watermarking evaluation and benchmarking methodology using an external group of evaluators and multi-criteria analysis based on ‘large-scale data. Softw. Pract. Exp. 47(10):1365–1392, 2017.CrossRefGoogle Scholar
  228. 228.
    Zionts, S., MCDM—If not a Roman numeral, then what? Interfaces (Providence). 9(4):94–101, 1979.CrossRefGoogle Scholar
  229. 229.
    Yas, Q. M. et al., Towards on develop a framework for the evaluation and benchmarking of skin detectors based on artificial intelligent models using multi-criteria decision-making techniques. Int. J. Pattern Recognit. Artif. Intell. 31(03):1759002, 2017.CrossRefGoogle Scholar
  230. 230.
    Zaidan, B. B. et al., A new approach based on multi-dimensional evaluation and benchmarking for data hiding techniques. International Journal of Information Technology & Decision Making:1–42, 2017.Google Scholar
  231. 231.
    Baltussen, R., and Niessen, L., Priority setting of health interventions: The need for multi-criteria decision analysis. Cost Eff. Resour. Alloc. 4(1):14, 2006.PubMedPubMedCentralCrossRefGoogle Scholar
  232. 232.
    Thokala, P. et al., Multiple criteria decision analysis for health care decision making—An introduction: Report 1 of the ISPOR MCDA emerging good practices task force. Value Heal. 19(1):1–13, 2016.CrossRefGoogle Scholar
  233. 233.
    Oliveira, M., Fontes, D. B. M. M., and Pereira, T., Multicriteria decision making: A case study in the automobile industry. Ann. Manag. Sci. 3(1):109, 2014.CrossRefGoogle Scholar
  234. 234.
    Zaidan, B. B. et al., Software and hardware FPGA-based digital watermarking and steganography approaches: Toward new methodology for evaluation and benchmarking using multi-criteria decision-making. J. Circuits, Syst. Comput., 2017.Google Scholar
  235. 235.
    Jumaah, F. M. et al., Technique for order performance by similarity to ideal solution for solving complex situations in multi-criteria optimization of the tracking channels of GPS baseband telecommunication receivers. Telecommun. Syst.:1–19, 2017.Google Scholar
  236. 236.
    Jadhav, A. and Sonar, R., Analytic hierarchy process (AHP), weighted scoring method (WSM), and hybrid knowledge based system (HKBS) for software selection: A comparative study, in 2009 2nd international conference on emerging trends in engineering and technology, ICETET 2009, 2009, pp. 991–997.Google Scholar
  237. 237.
    Zaidan, A. A. et al., Based multi-agent learning neural network and Bayesian for real-time IoT skin detectors: A new evaluation and benchmarking methodology. Neural Computing and Applications, 2019.Google Scholar
  238. 238.
    Qader, M. A. et al., A methodology for football players selection problem based on multi-measurements criteria analysis. Meas. J. Int. Meas. Confed. 111:38–50, 2017.CrossRefGoogle Scholar
  239. 239.
    Yas, Q. M. et al., Comprehensive insights into evaluation and benchmarking of real-time skin detectors: Review, open issues & challenges, and recommended solutions. Measurement 114:243–260, Jan. 2018.CrossRefGoogle Scholar
  240. 240.
    Alsalem, M. A. et al., Systematic review of an automated multiclass detection and classification system for acute Leukaemia in terms of evaluation and benchmarking, open challenges, issues and methodological aspects. J. Med. Syst. 42(11):204, Nov. 2018.PubMedPubMedCentralCrossRefGoogle Scholar
  241. 241.
    Albahri, A. S. et al., Real-time fault-tolerant mHealth system: Comprehensive review of healthcare services, opens issues, challenges and methodological aspects, Journal of Medical Systems, vol. 42, no. 8. Springer US, p. 137, Aug-2018.Google Scholar
  242. 242.
    Albahri, O. S. et al., Real-time remote health-monitoring Systems in a Medical Centre: A review of the provision of healthcare services-based body sensor information, open challenges and methodological aspects. J. Med. Syst. 42(9):164, 2018.CrossRefGoogle Scholar
  243. 243.
    Alsalem, M. A. et al., Multiclass benchmarking framework for automated acute Leukaemia detection and classification based on BWM and group-VIKOR. J. Med. Syst., 2019.Google Scholar
  244. 244.
    Enaizan, O. et al., Electronic medical record systems: Decision support examination framework for individual, security and privacy concerns using multi-perspective analysis. Heal. Technol., 2018.Google Scholar
  245. 245.
    Adunlin, G., Diaby, V., and Xiao, H., Application of multicriteria decision analysis in health care: A systematic review and bibliometric analysis. Heal. Expect. 18(6):1894–1905, 2015.CrossRefGoogle Scholar
  246. 246.
    Diaby, V., Campbell, K., and Goeree, R., Multi-criteria decision analysis (MCDA) in health care: A bibliometric analysis. Oper. Res. Heal. Care 2(1):20–24, 2013.CrossRefGoogle Scholar
  247. 247.
    Mühlbacher, A. C., and Kaczynski, A., Making good decisions in healthcare with multi-criteria decision analysis: The use, current research and future development of MCDA. Appl. Health Econ. Health Policy 14(1):29–40, 2016.PubMedCrossRefGoogle Scholar
  248. 248.
    Tariq, I. et al., MOGSABAT: A metaheuristic hybrid algorithm for solving multi-objective optimisation problems. Neural Comput. Appl., 2018.Google Scholar
  249. 249.
    Almahdi, E. M. et al., Mobile-based patient monitoring systems: A prioritisation framework using multi-criteria decision-making techniques. J. Med. Syst., 2019.Google Scholar
  250. 250.
    Almahdi, E. M. et al., Mobile patient monitoring systems from a benchmarking aspect: Challenges, open issues and recommended solutions. J. Med. Syst., 2019.Google Scholar
  251. 251.
    Zaidan, B. B., and Zaidan, A. A., Comparative study on the evaluation and benchmarking information hiding approaches based multi-measurement analysis using TOPSIS method with different normalisation, separation and context techniques. Measurement 117:277–294, 2018.CrossRefGoogle Scholar
  252. 252.
    Zaidan, A. A. et al., “A review on smartphone skin cancer diagnosis apps in evaluation and benchmarking: Coherent taxonomy, open issues and recommendation pathway solution,” Health Technol. (Berl)., pp. 1–16, Mar. 2018.Google Scholar
  253. 253.
    Rahmatullah, B. et al., 2017, April. Multi-complex attributes analysis for optimum GPS baseband receiver tracking channels selection. In 2017 4th international conference on control, decision and information technologies (CoDIT) (pp. 1084–1088). IEEE.Google Scholar
  254. 254.
    Salih, M.M., Zaidan, B.B., Zaidan, A.A. and Ahmed, M.A., 2018. Survey on fuzzy TOPSIS state-of-the-art between 2007–2017. Computers & Operations Research.Google Scholar
  255. 255.
    Jumaah, F. M., Zadain, A. A., Zaidan, B. B., Hamzah, A. K., and Bahbibi, R., Decision-making solution based multi-measurement design parameter for optimization of GPS receiver tracking channels in static and dynamic real-time positioning multipath environment. Measurement 118:83–95, 2018.CrossRefGoogle Scholar
  256. 256.
    Opricovic, S., and Tzeng, G.-H., Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. Eur. J. Oper. Res. 156(2):445–455, Jul. 2004.CrossRefGoogle Scholar
  257. 257.
    M. Mansooreh and J. Pet-Edwards, “Technical briefing: Making multiple-objective decisions,” Inst. Electr. ve Electron. Eng. Inc., IEEE Comput. Soc. Press. USA, 1997.Google Scholar
  258. 258.
    Triantaphyllou, E., Multi-criteria decision making methods: A comparative study. Vol. 44. Boston, MA: Springer US, 2000.CrossRefGoogle Scholar
  259. 259.
    Aruldoss, M., Lakshmi, T. M., and Venkatesan, V. P., A survey on multi criteria decision making methods and its applications. Am. J. Inf. Syst. 1(1):31–43, 2013.Google Scholar
  260. 260.
    K. P. Yoon and C.-L. Hwang, Multiple attribute decision making: An introduction, vol. 104. Sage publications, 1995.Google Scholar
  261. 261.
    Triantaphyllou, E., Shu, B., Sanchez, S. N., and Ray, T., Multi-criteria decision making: An operations research approach. Encycl. Electr. Electron. Eng. 15(1998):175–186, 1998.Google Scholar
  262. 262.
    Abdullateef, B. N. et al., An evaluation and selection problems of OSS-LMS packages. Springerplus 5(1):248, Dec. 2016.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • K. I. Mohammed
    • 1
  • A. A. Zaidan
    • 1
    Email author
  • B. B. Zaidan
    • 1
  • O. S. Albahri
    • 1
  • M. A. Alsalem
    • 2
  • A. S. Albahri
    • 3
  • Ali Hadi
    • 4
  • M. Hashim
    • 1
  1. 1.Department of ComputingUniversiti Pendidikan Sultan IdrisTanjong MalimMalaysia
  2. 2.College of Administration and EconomicUniversity of MosulMosulIraq
  3. 3.College of EngineeringUniversity of Information Technology and CommunicationsBaghdadIraq
  4. 4.Presidency of MinistriesEstablishment of MartyrsBaghdadIraq

Personalised recommendations