Advertisement

An Efficient Cardiac Arrhythmia Onset Detection Technique Using a Novel Feature Rank Score Algorithm

  • Hemalatha KarnanEmail author
  • N. Sivakumaran
  • Rajajeyakumar Manivel
Patient Facing Systems
  • 55 Downloads
Part of the following topical collections:
  1. Wearable Computing Techniques for Smart Health

Abstract

The interpretation of various cardiovascular blood flow abnormalities can be identified using Electrocardiogram (ECG). The predominant anomaly due to the blood flow dynamics leads to the occurrence of cardiac arrhythmias in the cardiac system. In this work, estimation of cardiac output (CO) parameter using blood flow rate analysis is carried out, which is a vital parameter to identify the subjects with left- ventricular arrhythmias (LVA). In particular, LVA is a resultant component of characteristic changes in blood rheology (blood flow rate). The CO is an intrinsic parameter derived from the stroke volume (SV) characterized by end-diastolic/systolic volumes (EDV/ESV) and heart rate. The pumping of blood from left ventricle (LV) reconciles in to R-R intervals depicted on ECG, which are used for heart rate estimation. The deviation from the nominal values of CO implies that, the subject is more prone to LVA. Further, the identification of subjects with LVA is accomplished by computing the features from the ECG signals. The proposed Feature Ranking Score (FRS) algorithm employs different statistical parameters to label the score of the extracted features. The feature score enables the selection optimal features for classification. The optimal features are further given to the Least Square- Support Vector Machine (LS-SVM) classifier for training and testing phases. The signals are acquired from public domain MIT-BIH arrhythmia database, used for validating the proposed technique for identifying the LVA using blood flow.

Keywords

Blood flow Electrocardiogram (ECG) Feature ranking score (FRS) Left ventricular arrhythmia (LVA) 

Notes

Compliance with ethical standards

Conflict of interest

This paper has not communicated anywhere till this moment, now only it is communicated to your esteemed journal for the publication with the knowledge of all co-authors.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Amann, A., Tratnig, R., Unterkofler K., Reliability of old and new ventricular fibrillation detection algorithms for automated external defibrillators. Biomed. Eng. Online 4(60), 2005.  https://doi.org/10.1186/1475-925X-4-60.CrossRefGoogle Scholar
  2. 2.
    Ghaffari, A., Golbayani, H., and Ghasemi, M., A new mathematical QRS detector using continues wavelet transform (CWT). Advances on Computer based Biological Signal Processing Techniques 34(2):81–91, 2008.Google Scholar
  3. 3.
    Aliya, S., Effects of vasodilation and arterial resistance on cardiac output. J Clinic Experiment Cardiol 2:170, 2011.  https://doi.org/10.4172/2155-9880.1000170.CrossRefGoogle Scholar
  4. 4.
    Alonso-Atienza, F., Rojo-Álvarez, J. L., Rosado-Muñoz, A., Vinagre, J. J., García-Alberola, A., and Camps-Valls, G., Feature selection using support vector machines and bootstrap methods for ventricular fibrillation detection. Expert Syst. Appl. 39(2):1956–1967, 2012.CrossRefGoogle Scholar
  5. 5.
    Arafat, M., Chowdhury, A., and Hasan, M., A simple time domain algorithm for the detection of ventricular fibrillation in electrocardiogram. SIViP 5:1–10, 2011.CrossRefGoogle Scholar
  6. 6.
    Arunasakthi, K., KamatchiPriya, L., and Askerunisa, A., Fisher Score Dimensionality Reduction for Svm Classification. In International Conference on Innovations in Engineering and Technology (ICIET14), pages 1900–1904. International Journal of Innovative Research in Science, Engineering and Technology.Google Scholar
  7. 7.
    Aslantas, G., Gürgen, F., and Salah, A. A., GA-NN approach for ECG feature selection in rule based arrhythmia classification. Neural Network World 24:267, 2014.CrossRefGoogle Scholar
  8. 8.
    Koplan, B. A., and Stevenson, W. G., Ventricular tachycardia and sudden cardiac death. Mayo Clin. Proc. 84(3):289–297, 2009 Mayo Foundation for Medical Education and Research.CrossRefGoogle Scholar
  9. 9.
    Venkanna, C., and Raja Ganapati, B., Feature vector selection for automatic classification of ECG arrhythmias. International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering (An ISO 3297: 2007 Certified Organization) 3(11):12840-12847.  https://doi.org/10.15662/ijareeie.2014.0311007.CrossRefGoogle Scholar
  10. 10.
    Simioni, C., Nardozza, L. M. M., Araujo Junior, E., Rolo, L. C., Zamith, M., and Caetano, A. C., Heart stroke volume, cardiac output, and ejection fraction in 265 normal fetus in the second half of gestation assessed by 4D ultrasound using spatio-temporal image correlation. J. Matern. Fetal Neonatal. Med. 24:1159–1167, 2011.  https://doi.org/10.3109/14767058.2010.545921 Download citation.CrossRefPubMedGoogle Scholar
  11. 11.
    Dandona, L. et al., Nations within a nation: Variations in epidemiological transition across the states of India, 1990–2016 in the global burden of disease study. Lancet 390(10111):2437–2460, 2017.CrossRefGoogle Scholar
  12. 12.
    Anas, E., Lee, S., and Hasan, M., Sequential algorithm for life threatening cardiac pathologies detection based on mean signal strength and EMD functions. Biomed. Eng. Online 9(1):43, 2010.CrossRefGoogle Scholar
  13. 13.
    Roonizi, E. K., and Sassi, R., A signal decomposition model based Bayesian framework for ECG components separation. IEEE Trans. Signal Process. 64(3):665, 2016.CrossRefGoogle Scholar
  14. 14.
    Benjamin, E. J. et al., Heart disease and stroke statistics—2017 update: Summary. Circulation 135:e146–e603, 2017.  https://doi.org/10.1161/CIR.0000000000000485.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Alonso-Atienza, F., Morgado, E., Fernández-Martínez, L., García-Alberola, A., and Rojo-Álvarez, J. L., Detection of life-threatening arrhythmias using feature selection and support vector machines. IEEE Trans. Biomed. Eng. 61(3):832–840, 2014.CrossRefGoogle Scholar
  16. 16.
    Fukuta, H., and Little, W. C., The cardiac cycle and the physiologic basis of left ventricular contraction, ejection, relaxation, and filling. Heart Fail. Clin. 4:1–11, 2008.CrossRefGoogle Scholar
  17. 17.
    Hamde, S. T., Kumar, V., and Saxena, S. C., Feature extraction from ECG signals using wavelet transforms for disease diagnostics. Int. J. Syst. Sci. 33(13):1073–1085, 2002.CrossRefGoogle Scholar
  18. 18.
    Jiang, H., and Ching, W.-K., Correlation kernels for support vector machines classification with applications in cancer data. Computational and Mathematical Methods in Medicine 2012:Article ID 205025, 2012.  https://doi.org/10.1155/2012/205025 Hindawi Publishing Corporation. 7 pages.CrossRefGoogle Scholar
  19. 19.
    Lance, G. N., and Williams, W. T., Computer programs for hierarchical polythetic classification. Comput. J. 9:60–64, 1966.CrossRefGoogle Scholar
  20. 20.
    Razavipour, F., Nikoo, M. h., and Abtahi, F., Numerical estimation of ejection fraction from 12-lead ECG. Journal of Bioengineering & Biomedical Science 6:1, 2015.  https://doi.org/10.4172/2155-9538.1000172.CrossRefGoogle Scholar
  21. 21.3
    Moody, G. B., and Mark, R. G., The impact of the MIT-BIH arrhythmia database. IEEE Eng. Med. Biol. 20(3):45–50, 2001.CrossRefGoogle Scholar
  22. 22.
    Rawther, N. N., and Cheriyan, J., Detection and classification of cardiac arrhythmias based on ECG and PCG using temporal and wavelet features. International Journal of Advanced Research in Computer and Communication Engineering 4(4):474, 2015.  https://doi.org/10.17148/IJARCCE.2015.44108.CrossRefGoogle Scholar
  23. 23.
    Le, TQ., Bukkapatnam, S.T., Komanduri, R., Real-time lumped parameter modeling of cardiovascular dynamics using electrocardiogram signals: toward virtual cardiovascular instruments. IEEE Trans Biomed Eng. 2013;60(8):2350–2360.CrossRefGoogle Scholar
  24. 24.
    Scher, A. M., and Young, A. C., Ventricular depolarization and the genesis of QRS. Ann. N. Y. Acad. Sci. 65:768–778, 1957.CrossRefGoogle Scholar
  25. 25.
    Sedghamiz, Hooman. (2014). Matlab Implementation of Pan Tompkins ECG QRS detector.  https://doi.org/10.13140/RG.2.2.14202.59841.
  26. 26.
    Pan, J., and Tompkins, W. J., A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. BME-32(3):230–236, 1985.CrossRefGoogle Scholar
  27. 27.
    Sheldon, S. H., Gard, J. J., and Asirvatham, S. J., Premature ventricular contractions and non-sustained ventricular tachycardia: Association with sudden cardiac death, risk stratification, and management strategies. Indian Pacing and Electrophysiology Journal 10(8):357–371.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Hemalatha Karnan
    • 1
    Email author
  • N. Sivakumaran
    • 1
  • Rajajeyakumar Manivel
    • 2
  1. 1.National Institute of TechnologyTiruchirappalliIndia
  2. 2.Department of Physiology TrichySRM Medical College Hospital & Research CentreIrungalur, TiruchirappalliIndia

Personalised recommendations