Effect of Game Based Balance Exercises on Rehabilitation After Knee Surgery: A Controlled Observational Study

  • Mattia MorriEmail author
  • Daniela Vigna
  • Debora Raffa
  • Davide Maria Donati
  • Maria Grazia Benedetti
Patient Facing Systems
Part of the following topical collections:
  1. Patient Facing Systems


Does a rehabilitation protocol based on balance exercises using Serious Game improve walk performance in patients undergoing knee resection and reconstruction for bone primary tumor?. 30 patients undergoing modular prosthetic replacement, following a primary bone tumor, were consecutively enrolled. During each hospitalization a physiotherapy treatment was activated, included 25 min training phase aimed postural and proprioceptive control. In order to better evaluate the walking speed at one-year post surgery in the study group, data were compared with a group of 22 patients treated in a previous period, called the control group, collected retrospectively. The control group differed only for the type of physiotherapy treatment offered. No statistically significant differences emerged from the two groups, regarding baseline characteristics. Walking speed in the study group was improved compared to the control group with a median difference of 0.22 m/s (p = 0.022). A difference was also measured in the speed of centre mass, with a median reduction of 4.5 mm/s (p = 0.005) in the study group, showing an improvement in postural control in stand-up position. Exercises aimed at recovering balance and Serious Game should be proposed in order to improve motor performance and postural control in the medium and long term.


Rehabilitation Postural balance Walking speed Bone neoplasms Serious game 



  1. 1.
    Hardes, J., Henrichs, M. P., Gosheger, G. et al., Endoprosthetic replacement after extra-articular resection of bone and soft-tissue tumours around the knee. Bone Joint J. 95-B(10):1425–1431, 2013.CrossRefGoogle Scholar
  2. 2.
    Yalniz, E., Ciftdemir, M., and Memişoğlu, S., Functional results of patients treated with modular prosthetic replacement for bone tumors of the extremities. Acta Orthop. Traumatol. Turc. 42(4):238–245, 2008.CrossRefGoogle Scholar
  3. 3.
    Qadir, I., Umer, M., and Baloch, N., Functional outcome of limb salvage surgery with mega-endoprosthetic reconstruction for bone tumors. Arch. Orthop. Trauma Surg. 132(9):1227–1232, 2012.CrossRefGoogle Scholar
  4. 4.
    Enneking, W. F., Dunham, W., Gebhardt, M. C. et al., A system for the functional evaluation of reconstructive procedures after surgical treatment of tumors of the musculoskeletal system. Clin. Orthop. 286:241–246, 1993.Google Scholar
  5. 5.
    Davis, A. M., Wright, J. G., Williams, J. I. et al., Development of a measure of physical function for patients with bone and soft tissue sarcoma. Qual. Life Res. 5:508–516, 1996.CrossRefGoogle Scholar
  6. 6.
    Beebe, K., Song, K. J., Ross, E. et al., Functional outcomes after limb-salvage surgery and endoprosthetic reconstruction with an expandable prosthesis: a report of 4 cases. Arch. Phys. Med. Rehabil. 90(6):1039–1047, 2009.CrossRefGoogle Scholar
  7. 7.
    Bekkering, W. P., Vliet Vlieland, T. P., Koopman, H. M. et al., A prospective study on quality of life and functional outcome in children and adolescents after malignant bone tumor surgery. Pediat. Blood Cancer 58(6):978–985, 2012.CrossRefGoogle Scholar
  8. 8.
    Okita, Y., Tatematsu, N., Nagai, K. et al., The effect of walking speed on gait kinematics and kinetics after endoprosthetic knee replacement following bone tumor resection. Gait Post. 40(4):622–627, 2014.CrossRefGoogle Scholar
  9. 9.
    Benedetti, M. G., Catani, F., Donati, D. et al., Muscle performance about the knee joint in patients who had distal femoral replacement after resection of a bone tumor. An objective study with use of gait analysis. J. Bone Joint Surg. Am. 82-A(11):1619–1625, 2000.CrossRefGoogle Scholar
  10. 10.
    Bernthal, N. M., Greenberg, M., Heberer, K. et al., What are the functional outcomes of endoprosthestic reconstructions after tumor resection? Clin. Orthop. Relat. Res. 473(3):812–819, 2015.CrossRefGoogle Scholar
  11. 11.
    Lopresti, M., Rancati, J., Farina, E. et al., Rehabilitation pathway after knee arthroplasty with mega prosthesis in osteosarcoma. Recenti Prog. Med. 106(8):385–392, 2015.PubMedGoogle Scholar
  12. 12.
    Shehadeh, A., El Dahleh, M. et al., Standardization of rehabilitation after limb salvage surgery for sarcomas improves patients' outcome. Hematol. Oncol. Stem Cell Ther. 6(3–4):105–111, 2013.CrossRefGoogle Scholar
  13. 13.
    Carty, C. P., Dickinson, I. C., Watts, M. C. et al., Impairment and disability following limb salvage procedures for bone sarcoma. Knee 16(5):405–408, 2009.CrossRefGoogle Scholar
  14. 14.
    de Visser, E., Deckers, J. A., Veth, R. P. et al., Deterioration of balance control after limb-saving surgery. Am. J. Phys. Med. Rehabil. 80(5):358–365, 2001.CrossRefGoogle Scholar
  15. 15.
    Meijer, H. A., Graafland, M., Goslings, J. C., and Schijven, M. P., Systematic review on the effects of serious games and wearable technology used in rehabilitation of patients with traumatic bone and soft tissue injuries. Arch. Phys. Med. Rehabil. 99(9):1890–1899, 2018.CrossRefGoogle Scholar
  16. 16.
    Lopes, S., Magalhães, P., Pereira, A. et al., Games used with serious purposes: A systematic review of interventions in patients with cerebral palsy. Front Psychol. 9:1712, 2018.CrossRefGoogle Scholar
  17. 17.
    Garcia-Agundez, A., Folkerts, A. K., Konrad, R., Caserman, P., Tregel, T., Goosses, M., Göbel, S., and Kalbe, E., Recent advances in rehabilitation for Parkinson's disease with Exergames: A systematic review. J. Neuroeng. Rehabil. 16(1):17, 2019.CrossRefGoogle Scholar
  18. 18.
    Liao, C. D., Liou, T. H., Huang, Y. Y., and Huang, Y. C., Effects of balance training on functional outcome after total knee replacement in patients with knee osteoarthritis: a randomized controlled trial. Clin. Rehabil. 27(8):697–709, 2013.CrossRefGoogle Scholar
  19. 19.
    Fung, V., Ho, A., Shaffer, J. et al., Use of Nintendo Wii Fit™ in the rehabilitation of outpatients following total knee replacement: a preliminary randomised controlled trial. Physiotherapy 98(3):183–188, 2012.CrossRefGoogle Scholar
  20. 20.
    Graham, J. E., Ostir, G. V., Fisher, S. R., and Ottenbacher, K. J., Assessing walking speed in clinical research: A systematic review. J. Eval. Clin. Pract. 14(4):552–562, 2008.CrossRefGoogle Scholar
  21. 21.
    Brosseau, L., Balmer, S., Tousignant, M. et al., Intra- and intertester reliability and criterion validity of the parallelogram and universal goniometers for measuring maximum active knee flexion and extension of patients with knee restrictions. Arch. Phys. Med. Rehabil. 82(3):396–402, 2001.CrossRefGoogle Scholar
  22. 22.
    Medical Research Council, Aids to the investigation of peripheral nerve injuries. 2nd edition. London: Her Majesty’s Stationary Office, 1943.Google Scholar
  23. 23.
    Butland, R. J. A., Pang, J., Woodcock, A. A., and Geddes, D. M., Two, six and twelve minute walking tests in respiratory disease. BMJ 284:1604–1608, 1982.CrossRefGoogle Scholar
  24. 24.
    Podsiadlo, D., and Richardson, S., The timed “up and go”: A test of basic functional mobility for frail elderly persons. J. Am. Geriatr. Soc. 39(2):142–148, 1991.CrossRefGoogle Scholar
  25. 25.
    Bohannon, R. W., and Williams Andrews, A., Normal walking speed: A descriptive meta-analysis. Physiotherapy 97(3):182–189, 2011.CrossRefGoogle Scholar
  26. 26.
    de Visser, E., Veth, R. P., Schreuder, H. W. et al., Reorganization of gait after limb-saving surgery of the lower limb. Am. J. Phys. Med. Rehabil. 82(11):825–831, 2003.CrossRefGoogle Scholar
  27. 27.
    Bekkering, W. P., Vliet Vlieland, T. P., Koopman, H. M. et al., Functional ability and physical activity in children and young adults after limb-salvage or ablative surgery for lower extremity bone tumors. J. Surg. Oncol. 1(3):103, 2011.Google Scholar
  28. 28.
    Ginsberg, J. P., Rai, S. N., & Carlson, C. A., et al., A comparative analysis of functional outcomes in adolescents and young adults with lower-extremity bone sarcoma. Pediatr. Blood Cancer., 49(7), 2007.Google Scholar
  29. 29.
    Manlapaz, D. G., Sole, G., Jayakaran, P., and Chapple, C. M., A narrative synthesis of Nintendo Wii fit gaming protocol in addressing balance among healthy older adults: What system works? Games Health J., 2017. Scholar
  30. 30.
    Bonnechère, B., Jansen, B., Omelina, L., and Van Sint Jan, S., The use of commercial video games in rehabilitation: A systematic review. Int. J. Rehabil. Res. 39(4):277–290, 2016.CrossRefGoogle Scholar
  31. 31.
    Iruthayarajah, J., McIntyre, A., Cotoi, A., Macaluso, S., and Teasell, R., The use of virtual reality for balance among individuals with chronic stroke: A systematic review and meta-analysis. Top Stroke Rehabil. 24(1):68–79, 2017.CrossRefGoogle Scholar
  32. 32.
    AIRTUM Working Group and AIEOP Working Group, Cancer in children and adolescents. Epidemiol. Prev. 37(1 Suppl 1):1–296, 2013.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Servizio di Assistenza Infermieristica, Tecnica e della RiabilitazioneIRCCS - Istituto Ortopedico RizzoliBolognaItaly
  2. 2.Clinica Ortopedica e Traumatologica III a Prevalente Indirizzo OncologicoIRCCS - Istituto Ortopedico RizzoliBolognaItaly
  3. 3.Struttura Complessa di Medicina Fisica e RiabilitativaIRCCS - Istituto Ortopedico RizzoliBolognaItaly

Personalised recommendations