Advertisement

A Survey of Healthcare Monitoring Systems for Chronically Ill Patients and Elderly

  • Mamoun T. MardiniEmail author
  • Youssef Iraqi
  • Nazim Agoulmine
Mobile & Wireless Health
Part of the following topical collections:
  1. Mobile & Wireless Health

Abstract

The demand of healthcare systems for chronically ill patients and elderly has increased in the last few years. This demand is derived by the necessity to allow patients and elderly to be independent in their homes without the help of their relatives or caregivers. The prosperity of the information technology plays an essential role in healthcare by providing continuous monitoring and alerting mechanisms. In this paper, we survey the most recent applications in healthcare monitoring. We organize the applications into categories and present their common architecture. Moreover, we explain the standards used and challenges faced in this field. Finally, we make a comparison between the presented applications and discuss the possible future research paths.

Keywords

Pervasive healthcare Elderly care Healthcare monitoring Wireless sensor network Smart sensors 

Notes

References

  1. 1.
    Bhatia, D., Estevez, L., and Rao, S.: Energy efficient contextual sensing for elderly care. In: IEEE 29th Annual International Conference on Engineering in Medicine and Biology Society (EMBS), pp. 4052–4055, 2007.  https://doi.org/10.1109/IEMBS.2007.4353223.
  2. 2.
    Ortman, J. M., Velkoff, V. A., and Hogan, H.: An aging nation: the older population in the United States, Washington, DC: US Census Bureau, 25–1140, 2014Google Scholar
  3. 3.
    Sadri, F., Ambient Intelligence: a survey. ACM Comput. Surv. 43(4):36:1–36:66, 2011.  https://doi.org/10.1145/1978802.1978815.CrossRefGoogle Scholar
  4. 4.
    Active Assested Living Programme (ALL), Accessed: Dec 1, 2018. http://www.aal-europe.eu
  5. 5.
    International Telecommunication Union (ITU), Accessed: Dec 1, 2018. http://www.itu.int/en/Pages/default.aspx
  6. 6.
    The International Federation for Medical and Biological Engineering (IFMBE), Accessed: Dec 1, 2018. http://ifmbe.org
  7. 7.
    World Health Organization (WHO), Accessed: Dec 1, 2018. http://www.who.int/en
  8. 8.
    Health-IT, Accessed: Dec 1, 2018. http://committees.comsoc.org/ehealth
  9. 9.
    Anliker, U., Ward, J., Lukowicz, P., Troster, G., Dolveck, F., Baer, M., Keita, F., Schenker, E., Catarsi, F., Coluccini, L., Belardinelli, A., Shklarski, D., Alon, M., Hirt, E., Schmid, R., and Vuskovic, M., AMON: a wearable multiparameter medical monitoring and alert system. IEEE Trans. Inf. Technol. Biomed. 8(4):415–427, 2004.  https://doi.org/10.1109/TITB.2004.837888.CrossRefPubMedGoogle Scholar
  10. 10.
    Sung, M., Marci, C., and Pentland, A., Wearable feedback systems for rehabilitation. J. Neuroeng. Rehabil. 2(1):17, 2005.CrossRefGoogle Scholar
  11. 11.
    Di Rienzo, M., Rizzo, F., Parati, G., Brambilla, G., Ferratini, M., and Castiglioni, P.: MagIC system: a new textile-based wearable device for biological signal monitoring. applicability in daily life and clinical setting. In: IEEE 27th Annual International Conference on Engineering in Medicine and Biology Society (EMBS), pp. 7167–7169, 2005.  https://doi.org/10.1109/IEMBS.2005.1616161.
  12. 12.
    Jih, W.-R., Hsu, J. Y.-J., Wu, C.-L., Liao, C.-F., and Cheng, S.-Y.: A multi-agent service framework for context-aware elder care. In: Proceedings of AAAMAS Workshop on Service-Oriented Computing and Agent-Based Engineering, pp. 61–75, 2006.Google Scholar
  13. 13.
    Wang, Q., Shin, W., Liu, X., Zeng, Z., Oh, C., AlShebli, B., Caccamo, M., Gunter, C., Gunter, E., Hou, J., Karahalios, K., and Sha, L., I-living: an open system architecture for assisted living. Systems, Man and Cybernetics 5:4268–4275, 2006.  https://doi.org/10.1109/ICSMC.2006.384805.CrossRefGoogle Scholar
  14. 14.
    Yao, J., and Warren, S., Applying the ISO/IEEE 11073 standards to wearable home health monitoring systems. J. Clin. Monit. Comput. 19(6):427–436, 2005.  https://doi.org/10.1007/s10877-005-2033-7.CrossRefPubMedGoogle Scholar
  15. 15.
    Harris, M., and Habetha, J.: The MyHeart project: a framework for personal health care applications. In: Computers in Cardiology, pp. 137–140, 2007.  https://doi.org/10.1109/CIC.2007.4745440.
  16. 16.
    She, H., Lu, Z., Jantsch, A., Zheng, L.-R., and Zhou, D.: A network-based system architecture for remote medical applications. In: Network Research Workshop, Vol. 27, 2007.Google Scholar
  17. 17.
    Lymberis, A., and Paradiso, R.: Smart fabrics and interactive textile enabling wearable personal applications: R&D state of the art and future challenges. In: IEEE 30th Annual International Conference on Engineering in Medicine and Biology Society (EMBS), pp. 5270–5273, 2008.  https://doi.org/10.1109/IEMBS.2008.4650403.
  18. 18.
    Churcher, G., Bilchev, G., Foley, J., Gedge, R., and Mizutani, T.: Experiences applying sensor web enablement to a practical telecare application. In: 3rd International Symposium on Wireless Pervasive Computing (ISWPC), pp. 138–142, 2008.  https://doi.org/10.1109/ISWPC.2008.4556183.
  19. 19.
    Lorincz, K., Chen, B.-R., Challen, G. W., Chowdhury, A. R., Patel, S., Bonato, P., and Welsh, M.: Mercury: a wearable sensor network platform for high-fidelity motion analysis. In: Proceedings of the 7th Conference on Embedded Networked Sensor Systems, pp. 183–196. ACM, 2009.Google Scholar
  20. 20.
    Shahram Nourizadeh, Y.-Q.S., Deroussent, C., and Thomesse, J.-P.: A distributed elderly healthcare system. In: Mobihealth, 2009.Google Scholar
  21. 21.
    Fernández-Luque, F., Zapata, J., Ruiz, R., and Iborra, E.: A wireless sensor network for assisted living at home of elderly people, Bioinspired Applications in Artificial and Natural Computation, 65–74, 2009Google Scholar
  22. 22.
    Spanoudakis, N., Grabner, B., Kotsiopoulou, C., Lymperopoulou, O., Moser-Siegmeth, V., Pantelopoulos, S., Sakka, P., and Moraitis, P.: A novel architecture and process for ambient assisted living - the HERA approach. In: Information Technology and Applications in Biomedicine (ITAB), pp. 1–4, 2010.  https://doi.org/10.1109/ITAB.2010.5687615.
  23. 23.
    Saponara, S., Donati, M., Bacchillone, T., Fanucci, L., Sanchez-Tato, I., Carmona, C., and Barba, P.: Remote monitoring of vital signs in patients with chronic heart failure: sensor devices and data analysis perspective. In: Sensors Applications Symposium (SAS), pp. 1–6, 2012.Google Scholar
  24. 24.
    Kim, W., Lim, S., Ahn, J., Nah, J., and Kim, N., Integration of IEEE 1451 and HL7 exchanging information for patients’ sensor data. J. Med. Syst. 34(6):1033–1041, 2010.  https://doi.org/10.1007/s10916-009-9322-5.CrossRefPubMedGoogle Scholar
  25. 25.
    Nourizadeh, S., and Deroussent, C.: Maisons vill’âge®;: smart use of home automation for healthy aging. In: International Conference on Smart Homes and Health Telematics, pp. 271–275. Springer, 2011.Google Scholar
  26. 26.
    Martín, P., Sánchez, M., Álvarez, L., Alonso, V., and Bajo, J.: Multi-agent system for detecting elderly people falls through mobile devices. In: Ambient Intelligence-Software and Applications, pp. 93–99. Springer, 2011.Google Scholar
  27. 27.
    Giokas, K., Kouris, I., and Koutsouris, D.: Autonomy, motivation and individual self-management for COPD patients, the amica project. In: Wireless Mobile Communication and Healthcare, Vol. 55 of Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, Springer Berlin Heidelberg, pp. 49-53, 2011.Google Scholar
  28. 28.
    Mateska, A., Pavloski, M., and Gavrilovska, L.: RFID and sensors enabled in-home elderly care. In: Proceedings of the 34th International Convention, pp. 285–290. MIPRO, 2011.Google Scholar
  29. 29.
    Bekiaris, A., Mourouzis, A., and Maglaveras, N.: The REMOTE AAL project: remote health and social care for independent living of isolated elderly with chronic conditions. In: Universal Access in Human-Computer Interaction. Context Diversity, Vol. 6767 of Lecture Notes in Computer Science, Springer Berlin Heidelberg, pp. 131–140, 2011.Google Scholar
  30. 30.
    Wang, C., Wang, Q., and Shi, S.: A distributed wireless body area network for medical supervision. In: Instrumentation and Measurement Technology Conference (I2MTC), pp. 2612–2616, 2012.  https://doi.org/10.1109/I2MTC.2012.6229260.
  31. 31.
    Tang, Y., Wang, S., Chen, Y., and Chen, Z.: PPCare: a personal and pervasive health care system for the elderly. In: Ubiquitous Intelligence and Computing, pp. 935–939, 2012.Google Scholar
  32. 32.
    Belbachir, A., Litzenberger, M., Schraml, S., Hofstatter, M., Bauer, D., Schon, P., Humenberger, M., Sulzbachner, C., Lunden, T., and Merne, M.: CARE: a dynamic stereo vision sensor system for fall detection. In: IEEE International Symposium on Circuits and Systems (ISCAS), pp. 731–734, 2012.  https://doi.org/10.1109/ISCAS.2012.6272141.
  33. 33.
    Yi He, Y. L., and Bao, S.-D.: Fall detection by built-in tri-accelerometer of smartphone. In: IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI), pp. 184–187, 2012.  https://doi.org/10.1109/BHI.2012.6211540.
  34. 34.
    Ahlrichs, C., Samà, A., Simon, J., Herrlich, S., and Rodrıguez-molinero, A.: Help: optimizing treatment of Parkinson’s disease patients. In: 3Rd International Conference on the Elderly and New Technologies. Castellón, Spain, 2012.Google Scholar
  35. 35.
    Khawandi, S., Daya, B., and Chauvet, P.: Applying neural network architecture in a multi-sensor monitoring system for the elderly. In: The Sixth International Conference on Advanced Engineering Computing and Applications in Sciences (ADVCOMP), pp. 15–22, 2012.Google Scholar
  36. 36.
    Bourke, A., Prescher, S., Koehler, F., Cionca, V., Tavares, C., Gomis, S., Garcia, V., and Nelson, J.: Embedded fall and activity monitoring for a wearable ambient assisted living solution for older adults. In: Engineering in Medicine and Biology Society (EMBC), pp. 248–251, 2012.  https://doi.org/10.1109/EMBC.2012.6345916.
  37. 37.
    Selim, B., Iraqi, Y., and Choi, H.-J.: A multi-sensor surveillance system for elderly care. In: IEEE 15th International Conference on e-Health Networking, Applications Services (Healthcom), pp. 502–506, 2013.  https://doi.org/10.1109/HealthCom.2013.6720728.
  38. 38.
    Heikkila, T., Strommer, E., Kivikunnas, S., Jarviluoma, M., Korkalainen, M., Kyllonen, V., Sarjanoja, E., and Peltomaa, I., Low intrusive Ehealth monitoring: human posture and activity level detection with an intelligent furniture network, Wireless Communications. IEEE 20(4):57–63, 2013.Google Scholar
  39. 39.
    Horta, E., Lopes, I., Rodrigues, J., and Proenca, M.: A mobile health application for falls detection and biofeedback monitoring. In: IEEE 15th International Conference on e-Health Networking, Applications Services (Healthcom), pp. 36–40, 2013.  https://doi.org/10.1109/HealthCom.2013.6720634.
  40. 40.
    Khorakhun, C., and Bhatti, S.: Remote health monitoring using online social media systems. In: 6th Joint IFIP Conference on Wireless and Mobile Networking (WMNC).  https://doi.org/10.1109/WMNC.2013.6548953, 2013.
  41. 41.
    Trigo, J., Eguzkiza, A., Martinez-Espronceda, M., and Serrano, L.: A cardiovascular patient follow-up system using twitter and HL7. In: Computing in Cardiology Conference (CinC), pp. 33–36, 2013.Google Scholar
  42. 42.
    Seeberg, T., Vedum, J., Sandsund, M., Austad, H., Liverud, A., Vardoy, A., Svagard, I., and Strisland, F.: Development of a wearable multisensor device enabling continuous monitoring of vital signs and activity. In: IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI), pp. 213–218, 2014.  https://doi.org/10.1109/BHI.2014.6864342.
  43. 43.
    Fekr, A., Radecka, K., and Zilic, Z., Design and evaluation of an intelligent remote tidal volume variability monitoring system in e-health applications. IEEE J. Biomed. Health Inform. 19(5):1532–1548, 2015.  https://doi.org/10.1109/JBHI.2015.2445783.CrossRefPubMedGoogle Scholar
  44. 44.
    Yang, Z., Zhou, Q., Lei, L., Zheng, K., and Xiang, W., An IoT-cloud based wearable ecg monitoring system for smart healthcare. J. Med. Syst. 40(12):286, 2016.CrossRefGoogle Scholar
  45. 45.
    Mondol, M. A. S., Emi, I. A., and Stankovic, J. A.: MedRem: an interactive medication reminder and tracking system on wrist devices. In: Wireless Health, pp. 46–53, 2016.Google Scholar
  46. 46.
    Forkan, A. R. M., Khalil, I., Ibaida, A., and Tari, Z., BDCAm: big data for context-aware monitoring—a personalized knowledge discovery framework for assisted healthcare. IEEE Transactions on Cloud Computing 5(4): 628–641, 2017.CrossRefGoogle Scholar
  47. 47.
    Vora, J., Tanwar, S., Tyagi, S., Kumar, N., and Rodrigues, J. J. P. C.: FAAL: fog computing-based patient monitoring system for ambient assisted living. In: 2017 IEEE 19th International Conference on e-Health Networking, Applications and Services (Healthcom), pp. 1–6, 2017.  https://doi.org/10.1109/HealthCom.2017.8210825.
  48. 48.
    Mauldin, T., Canby, M., Metsis, V., Ngu, A., and Rivera, C., Smartfall: a smartwatch-based fall detection system using deep learning. Sensors 18(10):3363, 2018.CrossRefGoogle Scholar
  49. 49.
    Kheirkhahan, M., Nair, S., Davoudi, A., Rashidi, P., Wanigatunga, A. A., Corbett, D. B., Mendoza, T., Manini, T. M., and Ranka, S., A smartwatch-based framework for real-time and online assessment and mobility monitoring. J. Biomed. Inform. 89:29–40, 2019.CrossRefGoogle Scholar
  50. 50.
    Hassan, M. K., El Desouky, A. I., Elghamrawy, S. M., and Sarhan, A. M.: Intelligent hybrid remote patient-monitoring model with cloud-based framework for knowledge discovery, Computers & Electrical EngineeringGoogle Scholar
  51. 51.
    Acampora, G., Cook, D., Rashidi, P., and Vasilakos, A., A survey on ambient intelligence in healthcare. Proc. IEEE 101(12):2470–2494, 2013.CrossRefGoogle Scholar
  52. 52.
    Alemdar, H., and Ersoy, C., Wireless sensor networks for healthcare: a survey. Comput. Net. 54(15): 2688–2710, 2010.CrossRefGoogle Scholar
  53. 53.
    Eathernet Alliance, Accessed: Dec 1, 2018. https://ethernetalliance.org
  54. 54.
    Universal Serial Bus (USB), Accessed: Dec 1, 2018. https://www.usb.org
  55. 55.
    Ko, J., Lu, C., Srivastava, M., Stankovic, J., Terzis, A., and Welsh, M., Wireless sensor networks for healthcare. Proc. IEEE 98(11):1947–1960, 2010.CrossRefGoogle Scholar
  56. 56.
    Bluetooth Low Energy (BLE), Accessed: Dec 1, 2018. https://www.bluetooth.com
  57. 57.
    ANT+, Accessed: Dec 1, 2018. https://www.thisisant.com
  58. 58.
    Rafio-Frequency Identification (RFID), Accessed: Dec 1, 2018. https://www.rfidinc.com
  59. 59.
    RuBee, Accessed: Dec 1, 2018. http://ru-bee.com
  60. 60.
    IPv6 over Low-Power Wireless Area Networks (6LoWPAN), Accessed: Dec 1, 2018. http://6lowpan.tzi.org
  61. 61.
    DASH7 Alliance, Accessed: Dec 1, 2018. http://www.dash7-alliance.org
  62. 62.
    Z-Wave, Accessed: Dec 1, 2018. https://www.z-wave.com
  63. 63.
    Ultra-Wide Band (UAB), Accessed: Dec 1, 2018. https://www.etsi.org
  64. 64.
    Near Field Communication (NFC), Accessed: Dec 1, 2018. http://nearfieldcommunication.org
  65. 65.
    Wan, J., Zou, C., Ullah, S., Lai, C.-F., Zhou, M., and Wang, X., Cloud-enabled wireless body area networks for pervasive healthcare, Network. IEEE 27(5):56–61, 2013.  https://doi.org/10.1109/MNET.2013.6616116.CrossRefGoogle Scholar
  66. 66.
    Haescher, M., Matthies, D. J., Srinivasan, K., and Bieber, G.: Mobile assisted living: smartwatch-based fall risk assessment for elderly people. ACM, 2018Google Scholar
  67. 67.
    Lutze, R., Baldauf, R., and Waldhör, K.: Dehydration prevention and effective support for the elderly by the use of smartwatches.  https://doi.org/10.1109/HealthCom.2015.7454534, 2015
  68. 68.
    Apple Watch Series 4, Accessed: Dec 1, 2018. https://www.apple.com/apple-watch-series-4
  69. 69.
    Samsung Gear 3, Accessed: Dec 1, 2018. https://www.samsung.com/global/galaxy/gear-s3
  70. 70.
    BLOCKS Core, Accessed: Dec 1, 2018. https://www.chooseblocks.com
  71. 71.
    Benmansour, A., Bouchachia, A., and Feham, M., Multioccupant activity recognition in pervasive smart home environments. ACM Comput. Surv. 48(3):34:1–34:36, 2015.  https://doi.org/10.1145/2835372.CrossRefGoogle Scholar
  72. 72.
    Rodríguez, N. D., Cuéllar, M. P., Lilius, J., and Calvo-Flores, M. D., A survey on ontologies for human behavior recognition. ACM Comput. Surv. 46(4):43:1–43:33, 2014.  https://doi.org/10.1145/2523819.CrossRefGoogle Scholar
  73. 73.
    Intille, S., Larson, K., Tapia, E., Beaudin, J., Kaushik, P., Nawyn, J., and Rockinson, R.: Using a live-in laboratory for ubiquitous computing research. In: Pervasive Computing, Vol. 3968 of Lecture Notes in Computer Science, Springer Berlin Heidelberg, pp. 349–365, 2006.Google Scholar
  74. 74.
    Gama, O., and Simoes, R.: A platform to emulate ambient assisted living environments. In: IEEE 15th International Conference on e-Health Networking, Applications Services (Healthcom), pp. 46–50, 2013.  https://doi.org/10.1109/HealthCom.2013.6720636.
  75. 75.
    Amiri, S., Pourazad, M., Nasiopoulos, P., and Leung, V.: Non-intrusive human activity monitoring in a smart home environment. In: IEEE 15th International Conference on e-Health Networking, Applications Services (Healthcom), pp. 606–610, 2013.  https://doi.org/10.1109/HealthCom.2013.6720748.
  76. 76.
    Schuldt, C., Laptev, I., and Caputo, B.: Recognizing human actions: a local SVM approach. In: Proceedings of the 17th International Conference on Pattern Recognition (ICPR), Vol. 3, pp. 32–36, 2004.Google Scholar
  77. 77.
    Laptev, I., On space-time interest points. Int. J. Comput. Vis. 64(2-3):107–123, 2005.  https://doi.org/10.1007/s11263-005-1838-7.CrossRefGoogle Scholar
  78. 78.
    Weinland, D., Ronfard, R., and Boyer, E., Free viewpoint action recognition using motion history volumes. Comput. Vis. Image Underst. 104(23):249–257, 2006.CrossRefGoogle Scholar
  79. 79.
    Noury, N., and Hadidi, T.: Simulation of human activity in a health smart home with HMM. In: IEEE 15th International Conference on e-Health Networking, Applications Services (Healthcom), pp. 125–129, 2013.  https://doi.org/10.1109/HealthCom.2013.6720652.
  80. 80.
    Eddy, S. R., Hidden Markov models. Curr. Opin. Struct. Biol. 6(3):361–365, 1996.  https://doi.org/10.1016/S0959-440X(96)80056-X.CrossRefPubMedGoogle Scholar
  81. 81.
    Hoppe, F., Plya-like Urns and the Ewens’ sampling formula. J. Math. Biol. 20(1):91–94, 1984.  https://doi.org/10.1007/BF00275863.CrossRefGoogle Scholar
  82. 82.
    Faria, J., Lima, B., Boldt Sousa, T., and Martins, A.: A testing and certification methodology for an ambient-assisted living ecosystem. In: IEEE 15th International Conference on e-Health Networking, Applications Services (Healthcom), pp. 585–589, 2013.  https://doi.org/10.1109/HealthCom.2013.6720744.
  83. 83.
    FDA Draft Guidance for Industry and FDA Staff - Design Considerations for Devices Intended for Home Use. Dec. 12, 2012. U.S. Food and Drug Administration, accessed: Dec 1, 2018. http://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/UCM331681.pdf
  84. 84.
    Moor, G. D., Sundgren, M., Kalra, D., Schmidt, A., Dugas, M., Claerhout, B., Karakoyun, T., Ohmann, C., Lastic, P.-Y., Ammour, N., Kush, R., Dupont, D., Cuggia, M., Daniel, C., Thienpont, G., and Coorevits, P., Using electronic health records for clinical research: the case of the {EHR4CR} project. J. Biomed. Inform. 53:162–173, 2015.  https://doi.org/10.1016/j.jbi.2014.10.006. http://www.sciencedirect.com/science/article/pii/S1532046414002263.CrossRefPubMedGoogle Scholar
  85. 85.
    Tomar, D., Bhati, J. P., Tomar, P., and Kaur, G.: Migration of healthcare relational database to NoSQL cloud database for healthcare analytics and management. In: Healthcare Data Analytics and Management, pp. 59–87. Elsevier, 2019.Google Scholar
  86. 86.
    Wang, Y., Kung, L., and Byrd, T. A., Big data analytics: understanding its capabilities and potential benefits for healthcare organizations. Technol. Forecast. Soc. Chang. 126:3–13, 2018.CrossRefGoogle Scholar
  87. 87.
    Andriopoulou, F., Birkos, K., and Lymberopoulos, D.: P2Care: a dynamic self-organized healthcare network for ubiquitous healthcare environment. In: IEEE 15th International Conference on e-Health Networking, Applications Services (Healthcom), pp. 294–298, 2013.  https://doi.org/10.1109/HealthCom.2013.6720688.
  88. 88.
    Song, E., and Lee, K., Understanding IEEE 1451-networked smart transducer interface standard - What is a smart transducer?, Instrumentation Measurement Magazine. IEEE 11(2):11–17, 2008.  https://doi.org/10.1109/MIM.2008.4483728.CrossRefGoogle Scholar
  89. 89.
    Bröring, A., Echterhoff, J., Jirka, S., Simonis, I., Everding, T., Stasch, C., Liang, S., and Lemmens, R., New generation sensor web enablement. Sensors 11(3):2652–2699, 2011.  https://doi.org/10.3390/s110302652.CrossRefPubMedGoogle Scholar
  90. 90.
    Jung, M., Park, J. G., Kim, J. H., and Cho, J.: Interoperability between medical devices using near field communication. In: International Conference on Information Science and Applications (ICISA), pp. 1–4, 2013.  https://doi.org/10.1109/ICISA.2013.6579328.
  91. 91.
    I. 11073, IEEE Standard for Health Informatics - Point-Of-Care Medical Device Communication - Part 20101: Application Profile - Base Standard, 2004Google Scholar
  92. 92.
    Song, E., and Lee, K.: Integration of IEEE smart transducers and OGC-SWE using STWS. In: Sensors Applications Symposium (SAS), pp. 298-303. IEEE, 2009.  https://doi.org/10.1109/SAS.2009.4801819.
  93. 93.
    Health Level Seven (HL7), Accessed: Dec 1, 2018. http://www.hl7.org
  94. 94.
    Eichelberg, M., Aden, T., Riesmeier, J., Dogac, A., Laleci, G. B., and Survey, A, Analysis of electronic healthcare record standards. ACM Comput. Surv. 37(4):277–315, 2005.  https://doi.org/10.1145/1118890.1118891. http://doi.acm.org/10.1145/1118890.1118891.CrossRefGoogle Scholar
  95. 95.
    Martínez-García, A., García-García, J., Escalona, M., and Parra-Calderón, C., Working with the {HL7} metamodel in a model driven engineering context. J. Biomed. Inform. 57:415–424, 2015.  https://doi.org/10.1016/j.jbi.2015.09.001. http://www.sciencedirect.com/science/article/pii/S1532046415001938.CrossRefPubMedGoogle Scholar
  96. 96.
    Universal open platform reference specification for ambient living (UniversAAL), Accessed: Dec 1, 2018. http://universaal.org/index.php/en
  97. 97.
    Vaportzis, E., Giatsi Clausen, M., and Gow, A. J., Older adults perceptions of technology and barriers to interacting with tablet computers: a focus group study. Front. Psychol. 8:1687, 2017.CrossRefGoogle Scholar
  98. 98.
    Ding, E., Liu, D., Soni, A., Adaramola, O., Han, D., Bashar, S. K., Noh, Y., Chon, K. H., and McManus, D. D.: Impressions of older patients with cardiovascular diseases to smart devices for heart rhythm monitoring. In: 2017 IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE), pp. 270-271. IEEE, 2017.Google Scholar
  99. 99.
    Yoo, J., Yan, L., Lee, S., Kim, Y., and Yoo, H.-J., A 5.2 mW self-configured wearable body sensor network controller and a 12 w wirelessly powered sensor for a continuous health monitoring system. IEEE J. Solid State Circuits 45(1):178–188, 2010.  https://doi.org/10.1109/JSSC.2009.2034440.CrossRefGoogle Scholar
  100. 100.
    Bachmann, C., Ashouei, M., Pop, V., Vidojkovic, M., Groot, H., and Gyselinckx, B., Low-power wireless sensor nodes for ubiquitous long-term biomedical signal monitoring, Communications Magazine. IEEE 50 (1):20–27, 2012.  https://doi.org/10.1109/MCOM.2012.6122528.CrossRefGoogle Scholar
  101. 101.
    Mottola, L., and Picco, G. P., Programming wireless sensor networks: fundamental concepts and state of the art. ACM Comput. Surv. 43(3): 19:1–19:51, 2011.  https://doi.org/10.1145/1922649.1922656. http://doi.acm.org/10.1145/1922649.1922656.CrossRefGoogle Scholar
  102. 102.
    Ren, H., and Meng, M.-H.: Bioeffects control in wireless biomedical sensor networks. In: IEEE 3rd Annual Communications Society on, Sensor and Ad Hoc Communications and Networks (SECON), Vol. 3, pp. 896–904, 2006.  https://doi.org/10.1109/SAHCN.2006.288579.
  103. 103.
    Camara, C., Peris-Lopez, P., and Tapiador, J. E., Security and privacy issues in implantable medical devices: a comprehensive survey. J. Biomed. Inform. 55:272–289, 2015.  https://doi.org/10.1016/j.jbi.2015.04.007. http://www.sciencedirect.com/science/article/pii/S153204641500074X.CrossRefPubMedGoogle Scholar
  104. 104.
    Gkoulalas-Divanis, A., Loukides, G., and Sun, J., Publishing data from electronic health records while preserving privacy: a survey of algorithms. J. Biomed. Inform. 50:4–19, 2014. Special Issue on Informatics Methods in Medical Privacy.  https://doi.org/10.1016/j.jbi.2014.06.002 http://www.sciencedirect.com/science/article/pii/S1532046414001403.CrossRefGoogle Scholar
  105. 105.
    Ondiege, B., Clarke, M., and Mapp, G., Exploring a new security framework for remote patient monitoring devices. Computers 6(1):11, 2017.CrossRefGoogle Scholar
  106. 106.
    Partala, J., Ker’́anen, N., S’́arest’́oniemi, M., H’́am’́al’́ainen, M., Iinatti, J., J’́ams’́a, T., Reponen, J., and Sepp’́anen, T.: Security threats against the transmission chain of a medical health monitoring system. In: IEEE 15th International Conference on e-Health Networking, Applications Services (Healthcom), pp. 243–248, 2013.  https://doi.org/10.1109/HealthCom.2013.6720675.
  107. 107.
    Thota, C., Sundarasekar, R., Manogaran, G., Varatharajan, R., and Priyan, M.: Centralized fog computing security platform for iot and cloud in healthcare system. In: Exploring the Convergence of Big Data and the Internet of Things, IGI Global, pp. 141–154, 2018.Google Scholar
  108. 108.
    Lee, Y.-D., and Chung, W.-Y., Wireless sensor network based wearable smart shirt for ubiquitous health and activity monitoring. Sens. Actuators B 140(2):390–395, 2009.  https://doi.org/10.1016/j.snb.2009.04.040.CrossRefGoogle Scholar
  109. 109.
    Li, Z., and Zhang, G.: A physical activities healthcare system based on wireless sensing technology. In: IEEE 13th International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA), pp. 369–376, 2007.  https://doi.org/10.1109/RTCSA.2007.10.
  110. 110.
    Barth, A., Hanson, M., Powell, H., and Lach, J.: TEMPO 3.1: a body area sensor network platform for continuous movement assessment. In: Sixth International Workshop on Wearable and Implantable Body Sensor Networks (BSN), pp. 71–76, 2009.  https://doi.org/10.1109/BSN.2009.39.
  111. 111.
    Schmitt, L., Falck, T., Wartena, F., and Simons, D.: Novel ISO/IEEE 11073 standards for personal telehealth systems interoperability. In: Joint Workshop on High Confidence Medical Devices, Software, and Systems and Medical Device Plug-and-Play Interoperability (HCMDSS-MDPnP), pp. 146–148, 2007.  https://doi.org/10.1109/HCMDSS-MDPnP.2007.9.
  112. 112.
    P1752 - Standard for Mobile Health Data, accessed: Dec 1, 2018. https://standards.ieee.org/project/1752.html
  113. 113.
    Thomas, L., and Capistrant, G.: State Telemedicine Gaps Analysis Coverage & Reimbursement, American Telemedicine AssociationGoogle Scholar
  114. 114.
    Liu, F. , Rijnboutt, E., Routsis, D., Venekamp, N., Fulgencio, H., Rezai, M., and van der Helm, A.: What challenges have to be faced when using the cloud for e-health services?. In: IEEE 15th International Conference on e-Health Networking, Applications Services (Healthcom), pp. 465–470, 2013.  https://doi.org/10.1109/HealthCom.2013.6720721.
  115. 115.
    Kraemer, F. A., Braten, A. E., Tamkittikhun, N., and Palma, D., Fog computing in healthcare—a review and discussion. IEEE Access 5:9206–9222, 2017.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Aging and Geriatric Research, College of MedicineUniversity of FloridaGainesvilleUSA
  2. 2.Department of Electrical and Computer EngineeringKhalifa UniversityAbu DhabiUnited Arab Emirates
  3. 3.University of Évry Val d’EssonneParis Saclay UniversityÉvryFrance

Personalised recommendations