Advertisement

Journal of Medical Systems

, 43:33 | Cite as

Sensor-Based mHealth Authentication for Real-Time Remote Healthcare Monitoring System: A Multilayer Systematic Review

  • Moceheb Lazam Shuwandy
  • B. B. Zaidan
  • A. A. ZaidanEmail author
  • A. S. Albahri
Systems-Level Quality Improvement
Part of the following topical collections:
  1. Systems-Level Quality Improvement

Abstract

The new and groundbreaking real-time remote healthcare monitoring system on sensor-based mobile health (mHealth) authentication in telemedicine has considerably bounded and dispersed communication components. mHealth, an attractive part in telemedicine architecture, plays an imperative role in patient security and privacy and adapts different sensing technologies through many built-in sensors. This study aims to improve sensor-based defence and attack mechanisms to ensure patient privacy in client side when using mHealth. Thus, a multilayer taxonomy was conducted to attain the goal of this study. Within the first layer, real-time remote monitoring studies based on sensor technology for telemedicine application were reviewed and analysed to examine these technologies and provide researchers with a clear vision of security- and privacy-based sensors in the telemedicine area. An extensive search was conducted to find articles about security and privacy issues, review related applications comprehensively and establish the coherent taxonomy of these articles. ScienceDirect, IEEE Xplore and Web of Science databases were investigated for articles on mHealth in telemedicine-based sensor. A total of 3064 papers were collected from 2007 to 2017. The retrieved articles were filtered according to the security and privacy of sensor-based telemedicine applications. A total of 19 articles were selected and classified into two categories. The first category, 57.89% (n = 11/19), included survey on telemedicine articles and their applications. The second category, 42.1% (n = 8/19), included articles contributed to the three-tiered architecture of telemedicine. The collected studies improved the essential need to add another taxonomy layer and review the sensor-based smartphone authentication studies. This map matching for both taxonomies was developed for this study to investigate sensor field comprehensively and gain access to novel risks and benefits of the mHealth security in telemedicine application. The literature on sensor-based smartphones in the second layer of our taxonomy was analysed and reviewed. A total of 599 papers were collected from 2007 to 2017. In this layer, we obtained a final set of 81 articles classified into three categories. The first category of the articles [86.41% (n = 70/81)], where sensor-based smartphones were examined by utilising orientation sensors for user authentication, was used. The second category [7.40% (n = 6/81)] included attack articles, which were not intensively included in our literature analysis. The third category [8.64% (n = 7/81)] included ‘other’ articles. Factors were considered to understand fully the various contextual aspects of the field in published studies. The characteristics included the motivation and challenges related to sensor-based authentication of smartphones encountered by researchers and the recommendations to strengthen this critical area of research. Finally, many studies on the sensor-based smartphone in the second layer have focused on enhancing accurate authentication because sensor-based smartphones require sensors that could authentically secure mHealth.

Keywords

Real-time remote healthcare monitoring system mHealth Security and privacy Sensor Smartphone 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Hussain, M. et al., The rise of keyloggers on smartphones: A survey and insight into motion-based tap inference attacks. Pervasive Mob. Comput. 25:1–25, 2016.CrossRefGoogle Scholar
  2. 2.
    Salem, Y. et al., A review on multimedia communications cryptography. Res. J. Inf. Technol. 3:146–152, 2011.Google Scholar
  3. 3.
    Elnajjar, M. et al.. Optimization digital image watermarking technique for patent protection. arXiv preprint arXiv:1002.4049. 2010.Google Scholar
  4. 4.
    Watari, M. A. et al., Securing m-government transmission based on symmetric and asymmetric algorithms: A review. Asian J. Sci. Res. 8:80–94, 2013.Google Scholar
  5. 5.
    Nabi, M. S. et al.. Suitability of adopting S/MIME and OpenPGP email messages protocol to secure electronic medical records. In Future Generation Communication Technology (FGCT), 2013 Second International Conference on (pp. 93–97). IEEE. 2013.Google Scholar
  6. 6.
    Naji, A. W. et al., Security improvement of credit card online purchasing system. Sci. Res. Essays 6(16):3357–3370, 2011.CrossRefGoogle Scholar
  7. 7.
    Zaidan, A. A. et al., Spam influence on business and economy: Theoretical and experimental studies for textual anti-spam filtering using mature document processing and naive Bayesian classifier. Afr. J. Bus. Manag. 5(2):596–607, 2011.Google Scholar
  8. 8.
    Raad, M. et al., Impact of spam advertisement through e-mail: A study to assess the influence of the anti-spam on the e-mail marketing. Afr. J. Bus. Manag. 4(11):2362–2367, 2010.Google Scholar
  9. 9.
    Alanazi, H. et al.. Intrusion detection system: overview. arXiv preprint arXiv:1002.4047. 2010.Google Scholar
  10. 10.
    Aos, A. Z. et al.. Approved undetectable-antivirus steganography for multimedia information in PE-file. In Computer Science and Information Technology-Spring Conference, 2009. IACSITSC'09. International Association of(pp. 437–441). IEEE. 2009.Google Scholar
  11. 11.
    Eltahir, M. E. et al.. High rate video streaming steganography. In Information Management and Engineering, 2009. ICIME'09. International Conference on (pp. 550–553). IEEE. 2009.Google Scholar
  12. 12.
    Talib, Y. Y. A. et al.. 3 “Optimizing Security and Flexibility by Designing a High Security System for E-Government Servers”. ICOCI09, University Utara Malaysia. 2009.Google Scholar
  13. 13.
    Zaidan, B. B. et al.. An empirical study for impact of the increment the size of hidden data on the image texture. ICFCC09. 2009.Google Scholar
  14. 14.
    Zaidan, A. A. et al.. Securing cover-file of hidden data using statistical technique and AES encryption algorithm. ICSAP09. 2009.Google Scholar
  15. 15.
    Ali, A. H. et al.. High capacity, transparent and secure audio steganography model based on fractal coding and chaotic map in temporal domain. Multimedia Tools and Applications, 1–30. 2018.Google Scholar
  16. 16.
    Zaidan, B. B. et al., Software and hardware FPGA-based digital watermarking and steganography approaches: Toward new methodology for evaluation and benchmarking using multi-criteria decision-making techniques. J. Circ. Syst. Comput. 26(07):1750116, 2017.CrossRefGoogle Scholar
  17. 17.
    Zaidan, B. B. et al., A new digital watermarking evaluation and benchmarking methodology using an external group of evaluators and multi-criteria analysis based on ‘large-scale data’. Softw. Pract. Exp. 47(10):1365–1392, 2017.CrossRefGoogle Scholar
  18. 18.
    Zaidan, B. B. et al., Comparative study on the evaluation and benchmarking information hiding approaches based multi-measurement analysis using TOPSIS method with different normalisation, separation and context techniques. Measurement 117:277–294, 2018.CrossRefGoogle Scholar
  19. 19.
    Naji, A. W. et al., New approach of hidden data in the portable executable file without change the size of carrier file using distortion techniques. Proc. World Acad. Sci. Eng. Technol. (WASET) 56:493–497, 2009.Google Scholar
  20. 20.
    Zaidan, A. et al., New comprehensive study to assess comparatively the QKD, XKMS, KDM in the PKI encryption algorithms. Int. J. Comput. Sci. Eng. 1, 2009.Google Scholar
  21. 21.
    Aos, A. Z. et al.. Approved undetectable-antivirus steganography for multimedia information in PE-file. In Computer Science and Information Technology-Spring Conference, 2009. IACSITSC'09. International Association of(pp. 437–441). IEEE. 2009.Google Scholar
  22. 22.
    Zaidan, B. B. et al., Stego-image vs stego-analysis system. Int. J. Comput. Elect. Eng. 1(5):572, 2009.CrossRefGoogle Scholar
  23. 23.
    Abomhara, Mohamed et al., (2010). Enhancing Selective Encryption for H.264/AVC Using Advanced Encryption Standard. International Journal of Computer Theory and Engineering. 2. 223–229.  https://doi.org/10.7763/IJCEE.2010.V2.141.
  24. 24.
    Alanazi, H et al.. New comparative study between DES, 3DES and AES within nine factors. arXiv preprint arXiv:1003.4085. 2010.Google Scholar
  25. 25.
    Zaidan, B. B. et al., Towards corrosion detection system. Int. J. Comput. Sci. Issues (IJCSI) 7(3):46, 2010.Google Scholar
  26. 26.
    Nidhal, S. et al., Computerized algorithm for fetal heart rate baseline and baseline variability estimation based on distance between signal average and alpha value. Int. J. Pharmacol. 7(2):228–237, 2011.CrossRefGoogle Scholar
  27. 27.
    Jawad, M. M. et al., An overview of laser principle, laser-tissue interaction mechanisms and laser safety precautions for medical laser users. Int. J. Pharmacol. 7(2):149–160, 2011.CrossRefGoogle Scholar
  28. 28.
    Abomhara, M. et al., An experiment of scalable video security solution using H. 264/AVC and advanced encryption standard (AES): Selective cryptography. Int. J. Phys. Sci. 6(16):4053–4063, 2011.Google Scholar
  29. 29.
    Zaidan, A. A. et al., Commercialization strategy and implementation plans for the proposed Vitual anti-spam system based on feasibility study. Asian J. Sci. Res. 8(3):403–412, 2015.CrossRefGoogle Scholar
  30. 30.
    Kiah, M. L. M. et al., Open source EMR software: Profiling, insights and hands-on analysis. Comput. Methods Prog. Biomed. 117(2):360–382, 2014.CrossRefGoogle Scholar
  31. 31.
    Kiah, M. M. et al., Design and develop a video conferencing framework for real-time telemedicine applications using secure group-based communication architecture. J. Med. Syst. 38(10):133, 2014.CrossRefGoogle Scholar
  32. 32.
    Doumbouya, M. B., Kamsu-Foguem, B., Kenfack, H., and Foguem, C., A framework for decision making on teleexpertise with traceability of the reasoning. IRBM 36(1):40–51, 2015.CrossRefGoogle Scholar
  33. 33.
    Kalid, N. et al., Based real time remote health monitoring systems: A review on patients prioritization and related" big data" using body sensors information and communication technology. J. Med. Syst. 42(2):30, 2018.CrossRefGoogle Scholar
  34. 34.
    Salman, O. H. et al., Novel methodology for triage and prioritizing using “big data” patients with chronic heart diseases through telemedicine environmental. Int. J. Inf. Technol. Decis. Mak. 16(05):1211–1245, 2017.CrossRefGoogle Scholar
  35. 35.
    Hamdi, O., Chalouf, M. A., Ouattara, D., and Krief, F., eHealth: Survey on research projects, comparative study of telemonitoring architectures and main issues. J. Netw. Comput. Appl. 46:100–112, 2014.CrossRefGoogle Scholar
  36. 36.
    Kiah, M. L. M. et al., MIRASS: Medical informatics research activity support system using information mashup network. J. Med. Syst. 38(4):37, 2014.Google Scholar
  37. 37.
    Zaidan, B. B. et al., Impact of data privacy and confidentiality on developing telemedicine applications: A review participates opinion and expert concerns. Int. J. Pharmacol. 7(3):382–387, 2011.CrossRefGoogle Scholar
  38. 38.
    Zaidan, A. A. et al., Evaluation and selection of open-source EMR software packages based on integrated AHP and TOPSIS. J. Biomed. Inform. 53:390–404, 2015.PubMedCrossRefGoogle Scholar
  39. 39.
    Zaidan, A. A. et al., Multi-criteria analysis for OS-EMR software selection problem: A comparative study. Decis. Support. Syst. 78:15–27, 2015.CrossRefGoogle Scholar
  40. 40.
    Hussain, M. et al., The landscape of research on smartphone medical apps: Coherent taxonomy, motivations, open challenges and recommendations. Comput. Methods Prog. Biomed. 122(3):393–408, 2015.CrossRefGoogle Scholar
  41. 41.
    Al-Haiqi, M. et al., A distributed framework for health information exchange using smartphone technologies. J. Biomed. Inform. 69:230–250, 2017.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Rajan, S. P., Review and investigations on future research directions of mobile based telecare system for cardiac surveillance. J. Appl. Res. Technol. 13(4):454–460, 2015 Universidad Nacional Autónoma de México, Centro de Ciencias Aplicadas y Desarrollo Tecnológico.CrossRefGoogle Scholar
  43. 43.
    Negra, R., Jemili, I., and Belghith, A., Wireless body area networks: Applications and technologies. Procedia Comput. Sci. 83:1274–1281, 2016.CrossRefGoogle Scholar
  44. 44.
    Alanazi, H. O. et al., Securing electronic medical records transmissions over unsecured communications: An overview for better medical governance. J. Med. Plants Res. 4(19):2059–2074, 2010.CrossRefGoogle Scholar
  45. 45.
    Nabi, M. S. A. et al., Suitability of using SOAP protocol to secure electronic medical record databases transmission. Int. J. Pharmacol. 6(6):959–964, 2010.CrossRefGoogle Scholar
  46. 46.
    Al-Bakri, S. H. et al., Securing peer-to-peer mobile communications using public key cryptography: New security strategy. Int. J. Phys. Sci. 6(4):930–938, 2011.Google Scholar
  47. 47.
    Hu, F., Celentano, L., and Xiao, Y., Mobile telemedicine: a computing and networking perspective.Mobile, Secure Tele-Cardiology Based on Wireless and Sensor Networks, 2008.Google Scholar
  48. 48.
    Ellouze, N., Rekhis, S., Boudriga, N., and Allouche, M., Powerless security for cardiac implantable medical devices: Use of wireless identification and sensing platform. J. Netw. Comput. Appl. 107:1–21, 2018.CrossRefGoogle Scholar
  49. 49.
    Andriole, K. P., Security of electronic medical information and patient privacy: What you need to know. J. Am. Coll. Radiol. 11(12):1212–1216, 2014.PubMedCrossRefGoogle Scholar
  50. 50.
    Kiah, M. M. et al., An enhanced security solution for electronic medical records based on AES hybrid technique with SOAP/XML and SHA-1. J. Med. Syst. 37(5):9971, 2013.PubMedCrossRefGoogle Scholar
  51. 51.
    Alanazi, H. O. et al., Secure topology for electronic medical record transmissions. Int. J. Pharmacol. 6(6):954–958, 2010.CrossRefGoogle Scholar
  52. 52.
    Alanazi, H. O. et al., Meeting the security requirements of electronic medical records in the ERA of high-speed computing. J. Med. Syst. 39(1):165, 2015.PubMedCrossRefGoogle Scholar
  53. 53.
    Zaidan, B. B. et al., A security framework for nationwide health information exchange based on telehealth strategy. J. Med. Syst. 39(5):51, 2015.PubMedCrossRefGoogle Scholar
  54. 54.
    Zaidan, A. A. et al., Challenges, alternatives, and paths to sustainability: Better public health promotion using social networking pages as key tools. J. Med. Syst. 39(2):7, 2015.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Medani, A. et al., Review of mobile short message service security issues and techniques towards the solution. Sci. Res. Essays 6(6):1147–1165, 2011.Google Scholar
  56. 56.
    Hussain, M. et al., Conceptual framework for the security of mobile health applications on android platform. Telematics Inform. 35(5):1335–1354, 2018.CrossRefGoogle Scholar
  57. 57.
    Iqbal, S. et al., Real-time-based E-health systems: Design and implementation of a lightweight key management protocol for securing sensitive information of patients. Heal. Technol.:1–19, 2018.Google Scholar
  58. 58.
    Enaizan, O. et al., Electronic medical record systems: Decision support examination framework for individual, security and privacy concerns using multi-perspective analysis. Heal. Technol.:1–28, 2018.Google Scholar
  59. 59.
    Hussain, M. et al., A security framework for mHealth apps on android platform. Comput. Sec. 75:191–217, 2018.CrossRefGoogle Scholar
  60. 60.
    Zaidan, B. B. et al., A new approach based on multi-dimensional evaluation and benchmarking for data hiding techniques. Int. J. Inf. Technol. Decis. Mak.:1–42, 2017.Google Scholar
  61. 61.
    Zaidan, A. A. et al., Novel approach for high (secure and rate) data hidden within triplex space for executable file. Sci. Res. Essays 5(15):1965–1977, 2010.Google Scholar
  62. 62.
    Alam, G. M. et al., Using the features of mosaic image and AES cryptosystem to implement an extremely high rate and high secure data hidden: Analytical study. Sci. Res. Essays 5(21):3254–3260, 2010.Google Scholar
  63. 63.
    Naji, A. W. et al., Novel approach for cover file of hidden data in the unused area two within EXE file using distortion techniques and advance encryption standard. Proc. World Acad. Sci. Eng. Technol. (WASET) 56(5):498–502, 2010.Google Scholar
  64. 64.
    Naji, A. W. et al.. Novel framework for hidden data in the image page within executable file using computation between advanced encryption standard and distortion techniques. arXiv preprint arXiv:0908.0216. 2009.Google Scholar
  65. 65.
    Zaidan, B. B. et al., On the differences between hiding information and cryptography techniques: An overview. J. Appl. Sci. (Faisalabad) 10(15):1650–1655, 2010.CrossRefGoogle Scholar
  66. 66.
    Hmood, A. K. et al., An overview on hiding information technique in images. J. Appl. Sci. (Faisalabad) 10(18):2094–2100, 2010.CrossRefGoogle Scholar
  67. 67.
    Hamdan, A. et al., New frame work of hidden data with in non multimedia file. Int. J. Comput. Netw. Secur. 2(1):46–54, 2010.Google Scholar
  68. 68.
    Jalab, H. A. et al., New design for information hiding with in steganography using distortion techniques. Int. J. Eng. Technol. 2(1):72, 2010.CrossRefGoogle Scholar
  69. 69.
    Zaidan, A. A. et al.. Securing cover-file without limitation of hidden data size using computation between cryptography and steganography. In Proceedings of the World Congress on Engineering (Vol. 1, pp. 1–7). 2009.Google Scholar
  70. 70.
    Zaidan, B. et al., Quality of image vs. quantity of data hidden in the image. IPCV 6:343–350, 2009.Google Scholar
  71. 71.
    Othman, F. et al.. An extensive empirical study for the impact of increasing data hidden on the images texture. In Future Computer and Communication, 2009. ICFCC 2009. International Conference on (pp. 477–481). IEEE. 2009.Google Scholar
  72. 72.
    Islam, R. et al.. New system for secure cover file of hidden data in the image page within executable file using statistical steganography techniques. arXiv preprint arXiv:1002.2416. 2010.Google Scholar
  73. 73.
    Zaidan, B. B. Et al.. Enhancement of the amount of hidden data and the quality of image. Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur, Malaysia. 2008.Google Scholar
  74. 74.
    Zaidan, A. A. et al., Novel approach for high secure data hidden in MPEG video using public key infrastructure. Int. J. Comput. Netw. Secur. 1(1):1985–1553, 2009.Google Scholar
  75. 75.
    Naji, A. W. et al., Challenges of hidden data in the unused area two within executable files. J. Comput. Sci. 5(11):890, 2009.CrossRefGoogle Scholar
  76. 76.
    Naji, A. W. et al., New approach of hidden data in the portable executable file without change the size of carrier file using statistical technique. Int. J. Comput. Sci. Netw. Sec. (IJCSNS) 9(7):218–224, 2009.Google Scholar
  77. 77.
    Majeed, A. et al., Novel approach for high secure and high rate data hidden in the image using image texture analysis. Int. J. Eng. Technol. 1(2):63–69, 2009.Google Scholar
  78. 78.
    Zaidan, A. A. et al.. Implementation stage for high securing cover-file of hidden data using computation between cryptography and steganography. International Association of Computer Science and Information Technology (IACSIT), indexing by Nielsen, Thomson ISI (ISTP), IACSIT Database, British Library and EI Compendex, 20. 2009.Google Scholar
  79. 79.
    Talib, et al.. 3 “Optimizing Security and Flexibility by Designing a High Security System for E-Government Servers”. ICOCI09, University Utara Malaysia. 2009.Google Scholar
  80. 80.
    Naji, A. W. et al.. " Stego-Analysis Chain, Session One" Investigations on Steganography Weakness vs Stego-Analysis System for Multimedia File. In Computer Science and Information Technology-Spring Conference, 2009. IACSITSC'09. International Association of (pp. 405–409). IEEE. 2009.Google Scholar
  81. 81.
    Khalifa, O. O. et al., Novel approach of hidden data in the (unused area 2 within EXE file) using computation between cryptography and steganography. Int. J. Comput. Sci. Netw. Sec. (IJCSNS) 9(5):294–300, 2010.Google Scholar
  82. 82.
    Zaidan, A. A. et al.. Securing cover-file without limitation of hidden data size using computation between cryptography and steganography. In Proceedings of the World Congress on Engineering (Vol. 1, pp. 1–7). 2009.Google Scholar
  83. 83.
    Naji, A. W. et al., Novel approach for secure cover file of hidden data in the unused area within exe file using computation between cryptography and steganography. Int. J. Comput. Sci. Netw. Sec. [On-line] 9(5):294–300, 2009.Google Scholar
  84. 84.
    Othman, F. et al.. An extensive empirical study for the impact of increasing data hidden on the images texture. In Future Computer and Communication, 2009. ICFCC 2009. International Conference on (pp. 477–481). IEEE. 2009.Google Scholar
  85. 85.
    Naji, A. W. et al.. " Stego-Analysis Chain, Session Two" Novel Approach of Stego-Analysis System for Image File. In Computer Science and Information Technology-Spring Conference, 2009. IACSITSC'09. International Association of (pp. 410–413). IEEE. 2009.Google Scholar
  86. 86.
    Zaidan, A. A. et al., High securing cover-file of hidden data using statistical technique and AES encryption algorithm. World Acad. Sci. Eng. Technol. (WASET) 54:468–479, 2009.Google Scholar
  87. 87.
    Taqa, A. et al., New framework for high secure data hidden in the MPEG using AES encryption algorithm. In. J. Comput. Elect. Eng. (IJCEE) 1(5):566–571, 2009.CrossRefGoogle Scholar
  88. 88.
    Zaidan, A. A. et al., New technique of hidden data in pe-file with in unused area one. In. J. Comput. Elect. Eng. (IJCEE) 1(5):669–678, 2009.Google Scholar
  89. 89.
    Jalab, H. et al., (2009). Frame selected approach for hiding data within MPEG video using bit plane complexity segmentation. arXiv preprint arXiv:0912.3986.Google Scholar
  90. 90.
    Ahmed, M. A. et al., A novel embedding method to increase capacity and robustness of low-bit encoding audio steganography technique using noise gate software logic algorithm. J. Appl. Sci. 10(1):59–64, 2010.CrossRefGoogle Scholar
  91. 91.
    Al-Frajat, A. K. et al., Hiding data in video file: An overview. J. Appl. Sci. (Faisalabad) 10(15):1644–1649, 2010.CrossRefGoogle Scholar
  92. 92.
    Wang H, Lymberopoulos D, Liu J. Sensor-Based User Authentication 168–185. 2015.Google Scholar
  93. 93.
    Mohsin, A. H. et al., Real-time medical systems based on human biometric steganography: A systematic review. J. Med. Syst. 42(12):245, 2018.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Mohsin, A. H. et al., Real-time remote health monitoring systems using body sensor information and finger vein biometric verification: A multi-layer systematic review. J. Med. Syst. 42(12):238, 2018.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Fantana, A. L., Ramachandran, S., Schunck, C. H., and Talamo, M., Movement based biometric authentication with smartphones. Proc. - Int. Carnahan Conf. Secur. Technol. 2015(18):235–239, 2016.Google Scholar
  96. 96.
    Al-Ani, Z. K. et al.. Overview: Main fundamentals for steganography. arXiv preprint arXiv:1003.4086. 2010.Google Scholar
  97. 97.
    Alanazi, H. et al.. New Classification Methods for Hiding Information into Two Parts: Multimedia Files and Non Multimedia Files. arXiv preprint arXiv:1003.4084. 2010.Google Scholar
  98. 98.
    Zaidan, A. A. et al., A new system for hiding data within (unused area two+ image page) of portable executable file using statistical technique and advance encryption Standared. Int. J. Comput. Theory Eng.\ 2(2):218, 2010.CrossRefGoogle Scholar
  99. 99.
    Yahya, A. N. et al.. A new system for hidden data within header space for EXE-File using object oriented technique. In Computer Science and Information Technology (ICCSIT), 2010 3rd IEEE International Conference on (Vol. 7, pp. 9–13). IEEE. 2010.Google Scholar
  100. 100.
    Hmood, A. K. et al., On the accuracy of hiding information metrics: Counterfeit protection for education and important certificates. Int. J. Phys. Sci. 5(7):1054–1062, 2010.Google Scholar
  101. 101.
    Abomhara, M. et al., Suitability of using symmetric key to secure multimedia data: An overview. J. Appl. Sci. (Faisalabad) 10(15):1656–1661, 2010.CrossRefGoogle Scholar
  102. 102.
    Hmood, A. K., Jalab, H. A., Kasirun, Z. M., Zaidan, B. B., and Zaidan, A. A., On the capacity and security of steganography approaches: An overview. J. Appl. Sci. (Faisalabad) 10(16):1825–1833, 2010.CrossRefGoogle Scholar
  103. 103.
    Zaidan, A. A. et al., Investigate the capability of applying hidden data in text file: An overview. J. Appl. Sci. (Faisalabad) 10(17):1916–1922, 2010.CrossRefGoogle Scholar
  104. 104.
    Zaidan, A. A. et al., Novel multi-cover steganography using remote sensing image and general recursion neural cryptosystem. Int. J. Phys. Sci. 5(11):1776–1786, 2010.Google Scholar
  105. 105.
    Zaidan, B. B. et al., StegoMos: A secure novel approach of high rate data hidden using mosaic image and ANN-BMP cryptosystem. Int. J. Phys. Sci. 5(11):1796–1806, 2010.Google Scholar
  106. 106.
    Mat Kiah, M. L. et al., A review of audio based steganography and digital watermarking. Int. J. Phys. Sci. 6(16):3837–3850, 2011.Google Scholar
  107. 107.
    Corpus, K. R., Gonzales, R. J. D., Morada, A. S., and Vea, L. A., Mobile user identification through authentication using keystroke dynamics and accelerometer biometrics. Proc. Int. Work. Mob. Softw. Eng. Syst. - MOBILESoft ‘ 16:11–12, 2016.CrossRefGoogle Scholar
  108. 108.
    Sun Z, Wang Y. A 3-D Hand Gesture Signature Based Biometric Authentication System for Smartphones, no. 2. 2015.Google Scholar
  109. 109.
    Hameed, S. A. et al., Novel simulation framework of three-dimensional skull bio-metric measurement. Shibab a. Hameed et al/International Journal on Computer Science and. Engineering 1(3):269–274, 2009.Google Scholar
  110. 110.
    Hameed et al., An accurate method to obtain bio-metric measurements for three dimensional skull. J. Appl. Sci. 10(2):145–150, 2010.CrossRefGoogle Scholar
  111. 111.
    Ling Z et al.. Secure fingertip mouse for mobile devices. Proc. - IEEE INFOCOM 2016 (16). 2016.Google Scholar
  112. 112.
    Ali, Z., Payton, J., and Sritapan, V., At your fingertips: Considering finger distinctness in continuous touch-based authentication for Mobile devices. Proc. - 2016 IEEE Symp. Secur. Priv. Work. SPW 2016:272–275, 2016.Google Scholar
  113. 113.
    Liu Q, Wang M, Zhao P, Yan C, Ding Z. A Behavioral Authentication Method for Mobile Gesture Against Resilient User Posture, 21016 3rd Int. Conf. Syst. Informatics, ICSAI 2016, no. Icsai. 324–331. 2016.Google Scholar
  114. 114.
    Lee S, Song K, Choi J. Access to an automated security system using gesture-based passwords, Proc 2012 15th Int Conf Network-Based Inf Syst NBIS 2012 (25): 760–765. 2012.Google Scholar
  115. 115.
    Muaaz M, Mayrhofer R. An Analysis of Different Approaches to Gait Recognition Using Cell Phone Based Accelerometers. Proc Int Conf Adv Mob Comput Multimed - MoMM ‘13. 293–300. 2013.Google Scholar
  116. 116.
    Nickel C, Brandt H, Busch C. Classification of Acceleration Data for Biometric Gait Recognition on Mobile Devices. Biosig 57–66. 2011.Google Scholar
  117. 117.
    Roy A, Halevi T, Memon N. An HMM-based multi-sensor approach for continuous mobile authentication. Proc - IEEE Mil Commun Conf MILCOM vol. 2015–Decem. 1311–1316. 2015.Google Scholar
  118. 118.
    Crouse D, Chandra D, Barbello B. Continuous Authentication of Mobile User: Fusion of Face Image and Inertial Measurement Unit Data. 135–142. 2013.Google Scholar
  119. 119.
    Dandachi, G, El Hassan B, El Husseini A. A Novel Identification/Verification Model Using Smartphone’s Sensors and User Behavior. (1): 235–238. 2013.Google Scholar
  120. 120.
    Feng, T., DeSalvo, N., Xu, L., Zhao, X., Wang, X., and Shi, W., Secure session on Mobile: An exploration on combining biometric, TrustZone, and user behavior. Proc. 6th Int. Conf. Mob. Comput. Appl. Serv. 1(4):206–215, 2014.Google Scholar
  121. 121.
    Shih D-H, Lu C-M, Shih M-H. A flick biometric authentication mechanism on mobile devices. Int Conf Inf Cybern Comput Soc Syst 31–33. 2015.Google Scholar
  122. 122.
    Laghari A, Memon ZA. Biometric Authentication Technique Using Smartphone Sensor. 2016 13th Int. Bhurban Conf. 2016 Jan 12 IEEE (20):381–384. 2016.Google Scholar
  123. 123.
    Nguyen H, Nguyen HH, Hoang T, Choi D, Nguyen TD. A Generalized Authentication Scheme For Mobile Phones Using Gait Signals 386–407. 2016.Google Scholar
  124. 124.
    Lin CC, Chang CC, Liang D, Yang CH. A new non-intrusive authentication method based on the orientation sensor for smartphone users. Proc 2012 IEEE 6th Int Conf Softw Secur Reliab SERE 2012 (24):245–252. 2012.Google Scholar
  125. 125.
    T. Van Goethem (B), W. Scheepers, D. Preuveneers, and W. Joosen, “Accelerometer-Based Device Fingerprinting for Multi-factor Mobile Authentication,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 9639, pp. 106–121, 2016.Google Scholar
  126. 126.
    Rybnicek M, Lang-Muhr C, Haslinger D. A roadmap to continuous biometric authentication on mobile devices. 2014 Int Wirel Commun Mob Comput Conf. 122–127. 2014.Google Scholar
  127. 127.
    Pisani, P. H., Lorena, A. C., and De Carvalho, A. C. P. L. F., Adaptive algorithms applied to accelerometer biometrics in a data stream context. Intell. Data Anal. 21(2):353–370, 2017.CrossRefGoogle Scholar
  128. 128.
    Kalid, N. et al., Based on real time remote health monitoring systems: A new approach for prioritization “large scales data” patients with chronic heart diseases using body sensors and communication technology. J. Med. Syst. 42(4):69, 2018.PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Yas, Q. M. et al., A systematic review on smartphone skin cancer apps: Coherent taxonomy, motivations, open challenges and recommendations, and new research direction. J. Circ. Syst. Comput. 27(05):1830003, 2018.CrossRefGoogle Scholar
  130. 130.
    Zaidan, A. A. et al., A survey on communication components for IoT-based technologies in smart homes. Telecommun. Syst.:1–25, 2018.Google Scholar
  131. 131.
    Alsalem, M. A. et al., Systematic review of an automated multiclass detection and classification system for acute Leukaemia in terms of evaluation and benchmarking, open challenges, issues and methodological aspects. J. Med. Syst. 42(11):204, 2018.PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Zaidan, A. A. et al., A review on smartphone skin cancer diagnosis apps in evaluation and benchmarking: Coherent taxonomy, open issues and recommendation pathway solution. Heal. Technol.:1–16, 2018.Google Scholar
  133. 133.
    Alsalem, M. A. et al.. A review of the automated detection and classification of acute leukaemia: Coherent taxonomy, datasets, validation and performance measurements, motivation, open challenges and recommendations. Computer methods and programs in biomedicine. (2018).Google Scholar
  134. 134.
    Ahmed, M. A. et al., A review on systems-based sensory gloves for sign language recognition state of the art between 2007 and 2017. Sensors 18(7):2208, 2018.CrossRefGoogle Scholar
  135. 135.
    Hamada, M. et al., A systematic review for human EEG brain signals based emotion classification, feature extraction, brain condition, group comparison. J. Med. Syst. 42(9):162, 2018.PubMedCrossRefGoogle Scholar
  136. 136.
    Tareq, Z. et al.. A review of disability EEG based wheelchair control system: Coherent taxonomy, open challenges and recommendations. Computer methods and programs in biomedicine. 2018.Google Scholar
  137. 137.
    Brian RM, Ben-Zeev D. Mobile health (mHealth) for mental health in Asia: Objectives, strategies, and limitations, Asian Journal of Psychiatry, vol. 10, no. 2014. Elsevier B.V. 96–100. 2014.Google Scholar
  138. 138.
    Iwaya, L. H. et al., Mobile health in emerging countries: A survey of research initiatives in Brazil. Int. J. Med. Inform. 82(5):283–298, 2013.PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Obi, T., Ishmatova, D., and Iwasaki, N., Promoting ICT innovations for the ageing population in Japan. Int. J. Med. Inform. 82(4):e47–e62, 2013.PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Shore, J. H., Aldag, M., McVeigh, F. L., Hoover, R. L., Ciulla, R., and Fisher, A., Review of Mobile health Technology for Military Mental Health. Mil. Med. 179(8):865–878, 2014.PubMedCrossRefGoogle Scholar
  141. 141.
    Adams, Z. W., McClure, E. A., Gray, K. M., Danielson, C. K., Treiber, F. A., and Ruggiero, K. J., Mobile devices for the remote acquisition of physiological and behavioral biomarkers in psychiatric clinical research. J. Psychiatr. Res. 85:1–14, 2017.CrossRefGoogle Scholar
  142. 142.
    Silva, B. M. C., Rodrigues, J. J. P. C., de la Torre Díez, I., López-Coronado, M., and Saleem, K., Mobile-health: A review of current state in 2015. J. Biomed. Inform. 56:265–272, 2015.PubMedCrossRefGoogle Scholar
  143. 143.
    Point, C., Accreditation, E., and Benton, D., Health care delivery. J. Nurs. Regul. 7(4):S12–S16, 2017.CrossRefGoogle Scholar
  144. 144.
    Schulmeister, L., Technology and the transformation of oncology care. Semin. Oncol. Nurs. 32(2):99–109, 2016.PubMedCrossRefGoogle Scholar
  145. 145.
    Reeder, B., Meyer, E., Lazar, A., Chaudhuri, S., Thompson, H. J., and Demiris, G., Framing the evidence for health smart homes and home-based consumer health technologies as a public health intervention for independent aging : A systematic review. Int. J. Med. Inform. 82(7):565–579, 2013.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Albahri, O. S. et al., Systematic review of real-time remote health monitoring system in triage and priority-based sensor technology: Taxonomy, open challenges, motivation and recommendations. J. Med. Syst. 42(5):80, 2018.PubMedCrossRefPubMedCentralGoogle Scholar
  147. 147.
    Lounis, A., Hadjidj, A., Bouabdallah, A., and Challal, Y., Healing on the cloud: Secure cloud architecture for medical wireless sensor networks. Futur. Gener. Comput. Syst. 55:266–277, 2016.CrossRefGoogle Scholar
  148. 148.
    Saleem, K., Derhab, A., Al-Muhtadi, J., and Shahzad, B., Human-oriented design of secure machine-to-machine communication system for e-healthcare society. Comput. Hum. Behav. 51:977–985, 2015.CrossRefGoogle Scholar
  149. 149.
    Albahri, A. S., Zaidan, A. A., Albahri, O. S., Zaidan, B. B., and Alsalem, M. A., Real-time fault-tolerant mHealth system: Comprehensive review of healthcare services, opens issues, challenges and methodological aspects. J. Med. Syst. 42(8):137, 2018.PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Albahri, O. S., Zaidan, A. A., Zaidan, B. B., Hashim, M., Albahri, A. S., and Alsalem, M. A., Real-time remote health-monitoring Systems in a Medical Centre: A review of the provision of healthcare services-based body sensor information, open challenges and methodological aspects. J. Med. Syst. 42(9):164, 2018.PubMedCrossRefPubMedCentralGoogle Scholar
  151. 151.
    Zhang, K., Liang, X., Baura, M., Lu, R., and (Sherman) Shen, X., PHDA: A priority based health data aggregation with privacy preservation for cloud assisted WBANs. Inf. Sci. (Ny). 284:130–141, 2014.CrossRefGoogle Scholar
  152. 152.
    Moreno, S., Quintero, A., Ochoa, C., Bonfante, M., Villareal, R., and Pestana, J., Remote monitoring system of vital signs for triage and detection of anomalous patient states in the emergency room, in 2016 XXI Symposium on Signal Processing, Images and Artificial Vision (STSIVA), pp. 1–5, 2016Google Scholar
  153. 153.
    Baehr, D., McKinney, S., Quirk, A., and Harfoush, K., On the practicality of elliptic curve cryptography for medical sensor networks, in 2014 11th Annual High Capacity Optical Networks and Emerging/Enabling Technologies (Photonics for Energy), pp. 41–45, 2014.Google Scholar
  154. 154.
    de la Piedra, A., Braeken, A., Touhafi, A., and Wouters, K., Secure event logging in sensor networks. Comput. Math. with Appl. 65(5):762–773, 2013.CrossRefGoogle Scholar
  155. 155.
    Hedin, D. S., Kollmann, D. T., Gibson, P. L., Riehle, T. H., and Seifert, G. J., Distance bounded energy detecting ultra-wideband impulse radio secure protocol, in 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 2014, pp. 6619–6622, 2014.Google Scholar
  156. 156.
    Soufiene, B. O., Bahattab, A. A., Trad, A., and Youssef, H., Lightweight and confidential data aggregation in healthcare wireless sensor networks. Trans. Emerg. Telecommun. Technol. 27(4):576–588, 2016.CrossRefGoogle Scholar
  157. 157.
    Benmansour, T., Ahmed, T., and Moussaoui, S., Performance Evaluation of IEEE 802.15.6 MAC in Monitoring of a Cardiac Patient, in 2016 IEEE 41st Conference on Local Computer Networks Workshops (LCN Workshops), pp. 241–247, 2016.Google Scholar
  158. 158.
    Zughoul, O. et al.. Comprehensive Insights into the Criteria of Student Performance in Various Educational Domains. IEEE Access. 2018.Google Scholar
  159. 159.
    Yuen, P. C., Zou, W. W., Zhang, S. B., Wong, K. K. F., and Lam, H. H. S., Finger gesture recognition through sweep sensor, Proc. 1st Int. Work. Interact. Multimed. Consum. Electron. - IMCE ‘09, pp. 11–17, 2009.Google Scholar
  160. 160.
    Hupperich, T., Hosseini, H., and Holz, T., Leveraging sensor fingerprinting for mobile device authentication. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) 9721:377–396, 2016.Google Scholar
  161. 161.
    Schwarting, M., Burton, T., and Yampolskiy, R., On the obfuscation of image sensor fingerprints. Proc. - 2015 Annu. Glob. Online Conf. Inf. Comput. Technol. GOCICT 2015:66–69, 2016.Google Scholar
  162. 162.
    Nader, J., Alsadoon, A., Prasad, P. W. C., Singh, A. K., and Elchouemi, A., Designing touch-based hybrid authentication method for smartphones. Procedia Comput. Sci. 70(28):198–204, 2015.CrossRefGoogle Scholar
  163. 163.
    Zheng, N., Bai, K., Huang, H., and Wang, H., You are how you touch: User verification on smartphones via tapping behaviors, Proc. - Int. Conf. Netw. Protoc. ICNP, pp. 221–232, 2014.Google Scholar
  164. 164.
    Buriro, A., Crispo, B., DelFrari, F., and Wrona, K., Hold and sign: A novel behavioral biometrics for smartphone user authentication. Proc. - 2016 IEEE Symp. Secur. Priv. Work. SPW 2016:276–285, 2016.Google Scholar
  165. 165.
    Feng, T., Zhao, X., Carbunar, B., and Shi, W., Continuous mobile authentication using virtual key typing biometrics. Proc. - 12th IEEE Int. Conf. Trust. Secur. Priv. Comput. Commun. Trust. 2013(21):1547–1552, 2013.Google Scholar
  166. 166.
    Ketabdar, H., Moghadam, P., Naderi, B., and Roshandel, M., Magnetic signatures in air for mobile devices, Proc. 14th Int. Conf. Human-computer Interact. with Mob. devices Serv. companion - MobileHCI ‘12, p. 185, 2012.Google Scholar
  167. 167.
    Maghsoudi, J., and Tappert, C. C., A behavioral biometrics user authentication study using motion data from android smartphones. Proc. - 2016 Eur. Intell. Secur. Inform. Conf. EISIC 2016:184–187, 2017.Google Scholar
  168. 168.
    Muaaz, M. and Mayrhofer, R., Orientation Independent Cell Phone Based Gait Authentication, Proc. 12th Int. Conf. Adv. Mob. Comput. Multimed. - MoMM ‘14, pp. 161–164, 2014.Google Scholar
  169. 169.
    Ali Fahmi, P. N., Kodirov, E., Choi, D. J., Lee, G. S., Mohd Fikri Azli A., and Sayeed, S., Implicit authentication based on ear shape biometrics using smartphone camera during a call, Conf. Proc. - IEEE Int. Conf. Syst. Man Cybern., no. 27, pp. 2272–2276, 2012.Google Scholar
  170. 170.
    Yang, H. et al., TapLock: Exploit finger tap events for enhancing attack resilience of smartphone passwords. IEEE Int. Conf. Commun. 2015(17):7139–7144, 2015.Google Scholar
  171. 171.
    Hussain, M. et al., The rise of keyloggers on smartphones: A survey and insight into motion-based tap inference attacks. Pervasive Mob. Comput. 25:1–25, 2016.CrossRefGoogle Scholar
  172. 172.
    Watanabe, Y., and Houryu, T. F., Toward introduction of immunity-based model to continuous behavior-based user authentication on smart phone. Procedia Comput. Sci. 22(1):1319–1327, 2013.CrossRefGoogle Scholar
  173. 173.
    Li, Y., Li, Y., Yan, Q., Kong, H., and Deng, R. H., Seeing Your Face Is Not Enough : An Inertial Sensor-Based Liveness Detection for Face Authentication, ACM SIGSAC Conf. Comput. Commun. Secur., pp. 1558–1569, 2015.Google Scholar
  174. 174.
    Ahmad, M., Khan, A. M., Brown, J. A., Protasov, S., and Khattak, A. M., Gait fingerprinting-based user identification on smartphones. Proc. Int. Jt. Conf. Neural Netw. 2016:3060–3067, 2016.Google Scholar
  175. 175.
    Jain, A., and Kanhangad, V., Exploring orientation and accelerometer sensor data for personal authentication in smartphones using touchscreen gestures. Pattern Recogn. Lett. 68:351–360, 2015.CrossRefGoogle Scholar
  176. 176.
    Lee, W. and Lee, R. B., Multi-sensor Authentication to Improve Smartphone Security, Conf. Inf. Syst. Secur. Privacy, IEEE, pp. 1–11, 2015.Google Scholar
  177. 177.
    Shen, C., Li, Y., Chen, Y., Guan, X., and Maxion, R. A., Performance Analysis of Multi-Motion Sensor Behavior for Active Smartphone Authentication, IEEE Trans. Inf. Forensics Secur., vol. 710049, 2017.Google Scholar
  178. 178.
    Roshandel, M., Haji-Abolhassani, A., and Ketabdar, H., MagiThings: Gestural interaction with mobile devices based on using embedded compass (magnetic field) sensor, Emerg. Perspect. Des. Use, Eval. Mob. Handheld Devices, 2015.Google Scholar
  179. 179.
    M. Wolff, Behavioral biometric identification on mobile devices, 2013 Int. Conf. Augment. Cogn., no. Icsai, pp. 783–791, 2013.Google Scholar
  180. 180.
    Pisani, P. H., Lorena, A. C., and De Carvalho, A. C. P. L. F., Adaptive algorithms in accelerometer biometrics. Proc. - 2014 Brazilian Conf. Intell. Syst. BRACIS 2014:336–341, 2014.CrossRefGoogle Scholar
  181. 181.
    Abate, A. F., Nappi, M., and Ricciardi, S., I-Am: Implicitly Authenticate Me Person Authentication on Mobile Devices Through Ear Shape and Arm Gesture, IEEE Trans. Syst. Man, Cybern. Syst., pp. 1–13, 2017.Google Scholar
  182. 182.
    Derawi, M. O., Nickely, C., Bours, P., and Busch, C., Unobtrusive user-authentication on mobile phones using biometric gait recognition, Proc. - 2010 6th Int. Conf. Intell. Inf. Hiding Multimed. Signal Process. IIHMSP 2010, pp. 306–311, 2010.Google Scholar
  183. 183.
    Islam, S., Naeem, U., and Amin, Y., Authentication of Smartphone Users Based on Activity Recognition and Mobile Sensing, Sensors (Switzerland), 2017.Google Scholar
  184. 184.
    Haque, M. M., Zawoad, S., and Hasan, R., Secure techniques and methods for authenticating visually impaired mobile phone users. 2013 IEEE Int. Conf. Technol. Homel. Secur. HST 2013(14):735–740, 2013.CrossRefGoogle Scholar
  185. 185.
    and T. M. P. Nguyen Ngoc Diep, Cuong Pham, “SigVer3D: Accelerometer based verification of 3-D signatures on mobile devices,” vol. 326, pp. 353–365, 2015.Google Scholar
  186. 186.
    Nickel, C., Derawi, M. O., Bours, P., and Busch, C., Scenario test of accelerometer-based biometric gait recognition. Proc. 3rd Int. Work. Secur. Commun. Networks, IWSCN 2011:15–21, 2011.Google Scholar
  187. 187.
    J. R. Kwapisz, G. M. Weiss, and S. A. Moore, “Cell Phone-Based Biometric Identification,” 2010.Google Scholar
  188. 188.
    Guerra-Casanova, J., Sánchez- Ávila, C., De Santos Sierra, A., and Del Pozo, G. B., Score optimization and template updating in a biometric technique for authentication in mobiles based on gestures. J. Syst. Softw. 84(11):2013–2021, 2011.CrossRefGoogle Scholar
  189. 189.
    Guerra-Casanova, J., Sánchez-Ávila, C., Bailador, G., and de Santos Sierra, A., Authentication in mobile devices through hand gesture recognition. Int. J. Inf. Secur. 11(2):65–83, 2012.CrossRefGoogle Scholar
  190. 190.
    Tamviruzzaman, M., Ahamed, S. I., Hasan, C. S., and O’brien, C., ePet: When cellular phone learns to recognize its owner. Proc. 2nd ACM Work. Assur. usable Secur. Config.:13–18, 2009.Google Scholar
  191. 191.
    M. O. Derawi, P. Bours, and K. Holien, “Improved cycle detection for accelerometer based gait authentication,” Proc. - 2010 6th Int. Conf. Intell. Inf. Hiding Multimed. Signal Process. IIHMSP 2010, pp. 312–317, 2010.Google Scholar
  192. 192.
    W.-H. L. and R. B. Lee and Princeton, “Implicit Authentication for Smartphone Security,” Commun. Comput. Inf. Sci., vol. 576, pp. 160–176, 2015.Google Scholar
  193. 193.
    Dhanakoti, V., and Manju Priya, R., Mobile handswing pattern. Int. J. Control Theory Appl. 9(5):2497–2507, 2016.Google Scholar
  194. 194.
    A. J. Aviv, B. Sapp, M. Blaze, and J. M. Smith, “Practicality of accelerometer side channels on smartphones,” Proc. 28th Annu. Comput. Secur. Appl. Conf. - ACSAC ‘12, p. 41, 2012.Google Scholar
  195. 195.
    Nixon, K. W., Chen, X., Mao, Z. H., Chen, Y., and Li, K., Mobile user classification and authorization based on gesture usage recognition. Proc. Asia South Pacific Des. Autom. Conf. ASP-DAC 11:384–389, 2013.Google Scholar
  196. 196.
    Sagar, M., and Kumar, S., Gait biometrics as an authentication in smartphones. Res. India Publ. J. 10(55):2954–2959, 2015.Google Scholar
  197. 197.
    Y. Zhong, Y. Deng, and G. Meltzner, “Pace independent mobile gait biometrics,” 2015 IEEE 7th Int. Conf. Biometrics Theory, Appl. Syst. BTAS 2015, 2015.Google Scholar
  198. 198.
    Hoang, T., Nguyen, T., Luong, C., Do, S., and Choi, D., Adaptive cross-device gait recognition using a mobile accelerometer. J. Inf. Process. Syst. 9(2):333–348, 2013.CrossRefGoogle Scholar
  199. 199.
    Hoang, T., Choi, D., and Nguyen, T. D., On the instability of sensor orientation in gait verification on Mobile phone. Secrypt:148–159, 2015.Google Scholar
  200. 200.
    G. Bajrami, M. O. Derawi, and P. Bours, “Towards an automatic gait recognition system using activity recognition (wearable based),” 2011 Third Int. Work. Secur. Commun. Networks, pp. 23–30, 2011.Google Scholar
  201. 201.
    J. G. Casanova, C. S. Ávila, A. De Santos Sierra, G. B. Del Pozo, and V. J. Vera, “A real-time in-air signature biometric technique using a mobile device embedding an accelerometer,” Commun. Comput. Inf. Sci., vol. 87 CCIS, no. PART 1, pp. 497–503, 2010.Google Scholar
  202. 202.
    Nickel, C., and Busch, C., Classifying accelerometer data via hidden Markov models to authenticate people by the way they walk. IEEE Aerosp. Electron. Syst. Mag. 28(10):29–35, 2013.CrossRefGoogle Scholar
  203. 203.
    E. Owusu, J. Han, S. Das, A. Perrig, and J. Zhang, “ACCessory: Password Inference Using Accelerometers on Smartphones,” Proc. Twelfth Work. Mob. Comput. Syst. Appl., p. 9:1–9:6, 2012.Google Scholar
  204. 204.
    P. Chen, Pande, A., and Mohapatra, “Sensor-Assisted Facial Recognition : An Enhanced Bio- metric Authentication System for Smartphones,” Proc. 12th Annu. Int. Conf. Mob. Syst. Appl. Serv. MobiSys ‘14, pp. 109–122, 2014.Google Scholar
  205. 205.
    M. Muaaz and R. Mayrhofer, “Accelerometer based Gait Recognition using Adapted Gaussian Mixture Models,” Proc. 14th Int. Conf. Adv. Mob. Comput. Multi Media - MoMM ‘16, pp. 288–291, 2016.Google Scholar
  206. 206.
    C. Nickel, T. Wirtl, and C. Busch, “Authentication of smartphone users based on the way they walk using k-NN algorithm,” Proc. 2012 8th Int. Conf. Intell. Inf. Hiding Multimed. Signal Process. IIH-MSP 2012, pp. 16–20, 2012.Google Scholar
  207. 207.
    Watanabe, Y., Influence of holding smart phone for acceleration-based gait authentication. Proc. - 2014 Int. Conf. Emerg. Secur. Technol. EST 2014:30–33, 2014.Google Scholar
  208. 208.
    R. Kumar, V. V. Phoha, and A. Jain, “Treadmill attack on gait-based authentication systems,” 2015 IEEE 7th Int. Conf. Biometrics Theory, Appl. Syst. BTAS 2015, 2015.Google Scholar
  209. 209.
    Muaaz M.; Mayrhofer R., “Cross Pocket Gait Authentication Using Mobile Phone Based Accelerometer Sensor,” 2015 Int. Conf. Comput. Aided Syst. Theory, pp. 731–738, 2015.Google Scholar
  210. 210.
    Sanzziri, A., Nandugudi, A., Upadhyaya, S., and Qiao, C., SESAME: Smartphone enabled secure access to multiple entities. 2013 Int. Conf. Comput. Netw. Commun. ICNC 2013(7):879–883, 2013.CrossRefGoogle Scholar
  211. 211.
    F. Rahman, M. O. Gani, G. M. T. Ahsan, and S. I. Ahamed, “Seeing Beyond Visibility: A Four Way Fusion of User Authentication for Efficient Usable Security on Mobile Devices,” 2014 IEEE Eighth International Conference on Software Security and Reliability-Companion pp. 121–129, 2014.Google Scholar
  212. 212.
    C. Lyu, A. Pande, X. Wang, J. Zhu, D. Gu, and P. Mohapatra, “CLIP: Continuous location integrity and provenance for mobile phones,” Proc. - 2015 IEEE 12th Int. Conf. Mob. Ad Hoc Sens. Syst. MASS 2015, pp. 172–180, 2015.Google Scholar
  213. 213.
    Witte, H., Rathgeb, C., and Busch, C., Context-aware Mobile biometric authentication based on support vector machines. 2013 Fourth Int. Conf. Emerg. Secur. Technol. 6:29–32, 2013.CrossRefGoogle Scholar
  214. 214.
    Zhu, J., Wu, P., Wang, X., and Zhang, J., “SenSec: Mobile security through passive sensing,” 2013. Int. Conf. Comput. Netw. Commun. ICNC 2013(9):1128–1133, 2013.Google Scholar
  215. 215.
    Hoang, T., Choi, D., and Nguyen, T., Gait authentication on mobile phone using biometric cryptosystem and fuzzy commitment scheme. Int. J. Inf. Secur. 14(6):549–560, 2015.CrossRefGoogle Scholar
  216. 216.
    Shila, D. M., Srivastava, K., O’Neill, P., Reddy, K., and Sritapan, V., A multi-faceted approach to user authentication for mobile devices — Using human movement, usage, and location patterns. 2016 IEEE Symp. Technol. Homel. Secur. 22:1–6, 2016.Google Scholar
  217. 217.
    Yang, L. et al., Unlocking smart phone through Handwaving biometrics. IEEE Trans. Mob. Comput. 14(5):1044–1055, 2015.CrossRefGoogle Scholar
  218. 218.
    A. Guerra-Casanova, J., Sanchez-Avila, C., Bailador Del Pozo, G., & De Santos-Sierra, “A sequence alignment approach applied to a Mobile authentication technique based on gestures,” Int. J. Pattern Recognit. Artif. Intell., vol. 27, no. 04, p. 1356006, 2013.Google Scholar
  219. 219.
    T. Feng, V. Prakash, and W. Shi, “touch panel with integrated fingerprint sensors based user identity management,” 2013 IEEE Int. Conf. Technol. Homel. Secur. HST 2013, no. 12, pp. 154–160, 2013.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Moceheb Lazam Shuwandy
    • 1
  • B. B. Zaidan
    • 1
  • A. A. Zaidan
    • 1
    Email author
  • A. S. Albahri
    • 1
  1. 1.Department of ComputingUniversiti Pendidikan Sultan IdrisTanjong MalimMalaysia

Personalised recommendations