Advertisement

Journal of Medical Systems

, 42:228 | Cite as

Internet of Things with Maximal Overlap Discrete Wavelet Transform for Remote Health Monitoring of Abnormal ECG Signals

  • Revathi Sundarasekar
  • M. Thanjaivadivel
  • Gunasekaran Manogaran
  • Priyan Malarvizhi Kumar
  • R. Varatharajan
  • Naveen Chilamkurti
  • Ching-Hsien Hsu
Mobile & Wireless Health
Part of the following topical collections:
  1. Mobile & Wireless Health

Abstract

In this paper, MODWT is used to decompose the Electrocardiography (ECG) signals and to identify the changes of R waves in the noisy input ECG signal. The MODWT is used to handle the arbitrary changes in the input signal. The R wave’s detctected by the proposed framework is used by the doctors and careholders to take necessary action for the patients. MATLAB simulink model is used to develop the simulation model for the MODWT method. The performance of the MODWT based remote health monitoring system method is comparatively analyzed with other ECG monitoring approaches such as Haar Wavelet Transformation (HWT) and Discrete Wavelet Transform (DWT). Sensitivity, specificity, and Receiver Operating Characteristic (ROC) curve are calculated to evaluate the proposed Internet of Things with MODWT based ECG monitoring system. We have used MIT-BIH Arrythmia Database to perform the experiments.

Keywords

Wearable sensor devices Internet of things Remote health monitoring system ECG signals Maximal overlap discrete wavelet transform Monitoring system Haar wavelet transformation Simulation model 

Notes

Compliance with Ethical Standards

Conflict of Interests

The authors declare that this article content has no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Atzori, L., Iera, A., and Morabito, G., The internet of things: A survey. Comput. Netw. 54(15):2787–2805, 2010.CrossRefGoogle Scholar
  2. 2.
    Sarma, A. C., and Girão, J., Identities in the future internet of things. Wirel. Pers. Commun. 49(3):353–363, 2009.CrossRefGoogle Scholar
  3. 3.
    Gubbi, J., Buyya, R., Marusic, S., and Palaniswami, M., Internet of things (IoT): A vision, architectural elements, and future directions. Futur. Gener. Comput. Syst. 29(7):1645–1660, 2013.CrossRefGoogle Scholar
  4. 4.
    Walport, M., The internet of things: Making the most of the second digital revolution. A report by the UK Government Chief Scientific Adviser, 2014.Google Scholar
  5. 5.
    Ning, H., and Wang, Z., Future internet of things architecture: Like mankind neural system or social organization framework? IEEE Commun. Lett. 15(4):461–463, 2011.CrossRefGoogle Scholar
  6. 6.
    Baoyun, W., Review on internet of things. Journal of Electronic Measurement and Instrument 23(12):1–7, 2009.Google Scholar
  7. 7.
    Da Xu, L., He, W., and Li, S., Internet of things in industries: A survey. IEEE Transactions on Industrial Informatics 10(4):2233–2243, 2014.CrossRefGoogle Scholar
  8. 8.
    Silva, J. S., Zhang, P., Pering, T., Boavida, F., Hara, T., and Liebau, N. C., People-centric internet of things. IEEE Commun. Mag. 55(2):18–19, 2017.CrossRefGoogle Scholar
  9. 9.
    Bäumer, U., von Oelffen, S., and Keil, M., Internet of things: Legal implications for every business. InThe Palgrave Handbook of Managing Continuous Business Transformation (pp. 435-458). Palgrave Macmillan UK, 2017.Google Scholar
  10. 10.
    Abawajy, J. H., and Hassan, M. M., Federated internet of things and cloud computing pervasive patient health monitoring system. IEEE Commun. Mag. 55(1):48–53, 2017.CrossRefGoogle Scholar
  11. 11.
    Mieronkoski, R., Azimi, I., Rahmani, A.M., Aantaa, R., Terävä, V., Liljeberg, P., Salanterä, S., The Internet of Things for Basic Nursing Care-A Scoping Review. International Journal of Nursing Studies, 2017.Google Scholar
  12. 12.
    Lorincz, K., Malan, D. J., Fulford-Jones, T. R., Nawoj, A., Clavel, A., Shnayder, V. et al., Sensor networks for emergency response: Challenges and opportunities. Pervasive Computing. IEEE 3(4):16–23, 2004.Google Scholar
  13. 13.
    Malan, D., Fulford-Jones, T., Welsh, M., and Moulton, S., Codeblue: An ad hoc sensor network infrastructure for emergency medical care. In International workshop on wearable and implantable body sensor networks (Vol. 5), 2004.Google Scholar
  14. 14.
    Stojkoska, B. L., and Trivodaliev, K. V., A review of internet of things for smart home: Challenges and solutions. J. Clean. Prod. 140:1454–1464, 2017.CrossRefGoogle Scholar
  15. 15.
    Mulani, T.T., and Pingle, S.V., Internet of things. International Research Journal of Multidisciplinary Studies. 2(3), 2016.Google Scholar
  16. 16.
    Ho, G., Leung, D., Mishra, P., Hosseini, A., Song, D., and Wagner, D., Smart locks: Lessons for securing commodity internet of things devices. In Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security (pp. 461-472). ACM, 2016.Google Scholar
  17. 17.
    Lin, A.T., Lee, J., Lee, D., and Chen, C.C., The development of IC packaging under the internet of things standards. InMicrosystems, packaging, assembly and circuits technology conference (IMPACT), 2016 11th international (pp. 209-211). IEEE, 2016.Google Scholar
  18. 18.
    Kumar, P., and Lee, H. J., Security issues in healthcare applications using wireless medical sensor networks: A survey. Sensors 12(1):55–91, 2011.CrossRefGoogle Scholar
  19. 19.
    Ng, J. W., Lo, B. P., Wells, O., Sloman, M., Peters, N., Darzi, A., … and Yang, G. Z., Ubiquitous monitoring environment for wearable and implantable sensors (UbiMon). In International Conference on Ubiquitous Computing (Ubicomp), 2004.Google Scholar
  20. 20.
    Chakravorty, R., A programmable service architecture for mobile medical care. In Pervasive Computing and Communications Workshops, 2006. PerCom Workshops 2006. Fourth Annual IEEE International Conference on (pp. 5-pp). IEEE, 2006.Google Scholar
  21. 21.
    Blum, J. M., and Magill, E.H., The design and evaluation of personalised ambient mental health monitors. InConsumer communications and networking conference (CCNC), 2010 7th IEEE (pp. 1-5). IEEE, 2010.Google Scholar
  22. 22.
    Wang, K., Qi, X., Shu, L., Deng, D. J., and Rodrigues, J. J., Toward trustworthy crowdsourcing in the social internet of things. IEEE Wirel. Commun. 23(5):30–36, 2016.CrossRefGoogle Scholar
  23. 23.
    Ye, Q., and Zhuang, W., Distributed and adaptive medium access control for internet-of-things-enabled Mobile networks. IEEE Internet of Things Journal, 2016.Google Scholar
  24. 24.
    D’Angelo, G., Ferretti, S., and Ghini, V., Multi-level simulation of internet of things on smart territories. Simulation Modelling Practice and Theory, 2016.Google Scholar
  25. 25.
    Cheng, J., Cheng, J., Zhou, M., Liu, F., Gao, S., and Liu, C., Routing in internet of vehicles: A review. IEEE Trans. Intell. Transp. Syst. 16(5):2339–2352, 2015.CrossRefGoogle Scholar
  26. 26.
    Dimitrakopoulos, G., Intelligent transportation systems based on internet-connected vehicles: Fundamental research areas and challenges. In ITS Telecommunications (ITST), 2011 11th International Conference on (pp. 145-151). IEEE, 2011.Google Scholar
  27. 27.
    Leng, Y., and Zhao, L., Novel design of intelligent internet-of-vehicles management system based on cloud-computing and internet-of-things. In Electronic and Mechanical Engineering and Information Technology (EMEIT), 2011 International Conference on (Vol. 6, pp. 3190-3193). IEEE, 2011.Google Scholar
  28. 28.
    Gerla, M., Lee, E. K., Pau, G., and Lee, U., Internet of vehicles: From intelligent grid to autonomous cars and vehicular clouds. In Internet of Things (WF-IoT), 2014 IEEE World Forum on (pp. 241-246). IEEE, 2014.Google Scholar
  29. 29.
    Varatharajan, R., Vasanth, K., Gunasekaran, M., Priyan, M., and Gao, X. Z., An adaptive decision based kriging interpolation algorithm for the removal of high density salt and pepper noise in images. Computers and Electrical Engineering, 2017.Google Scholar
  30. 30.
    Manogaran, G., Lopez, D., Thota, C., Abbas, K. M., Pyne, S., and Sundarasekar, R., Big data analytics in healthcare internet of things. In innovative healthcare systems for the 21st century (pp. 263-284). Springer International Publishing, 2017.Google Scholar
  31. 31.
    Lopez, D., and Manogaran, G., Modelling the H1N1 influenza using mathematical and neural network approaches. Biomedical Research, 2017.Google Scholar
  32. 32.
    Manogaran, G., and Lopez, D., A Gaussian process based big data processing framework in cluster computing environment. Cluster Computing, 1–16, 2017.Google Scholar
  33. 33.
    Manogaran, G., Thota, C., and Lopez, D., Human-Computer Interaction With Big Data Analytics. In HCI Challenges and Privacy Preservation in Big Data Security (pp. 1–22). IGI Global, 2018.Google Scholar
  34. 34.
    Manogaran, G., and Lopez, D., Spatial cumulative sum algorithm with big data analytics for climate change detection. Computers & Electrical Engineering, 2017.Google Scholar
  35. 35.
    Manogaran, G., Thota, C., Lopez, D., and Sundarasekar, R., Big data security intelligence for healthcare industry 4.0. In Cybersecurity for Industry 4.0 (pp. 103-126). Springer International Publishing, 2017.Google Scholar
  36. 36.
    Wan, J., Liu, J., Shao, Z., Vasilakos, A. V., Imran, M., and Zhou, K., Mobile crowd sensing for traffic prediction in internet of vehicles. Sensors 16(1):88, 2016.CrossRefGoogle Scholar
  37. 37.
    Prinsloo, J., and Malekian, R., Accurate vehicle location system using RFID, an internet of things approach. Sensors 16(6):825, 2016.CrossRefGoogle Scholar
  38. 38.
    Lopez, D., Gunasekaran, M., Murugan, B. S., Kaur, H., and Abbas, K. M., Spatial big data analytics of influenza epidemic in Vellore, India. In big data (big data), 2014 IEEE international conference on (pp. 19-24). IEEE, 2014.Google Scholar
  39. 39.
    Lopez, D., and Gunasekaran, M., Assessment of vaccination strategies using fuzzy multi-criteria decision making. In proceedings of the fifth international conference on fuzzy and neuro computing (FANCCO-2015) (pp. 195-208). Springer, 2015.Google Scholar
  40. 40.
    Lopez, D., and Sekaran, G., Climate change and disease dynamics-a big data perspective. Int. J. Infect. Dis. 45:23–24, 2016.CrossRefGoogle Scholar
  41. 41.
    Lopez, D., and Manogaran, G., Big Data Architecture for Climate Change and Disease Dynamics, Eds. Geetam S. Tomar et al. The Human Element of Big Data: Issues, Analytics, and Performance, CRC Press, 2016.Google Scholar
  42. 42.
    Manogaran, G., Thota, C., and Kumar, M. V., MetaCloudDataStorage architecture for big data security in cloud computing. Procedia Computer Science 87:128–133, 2016.CrossRefGoogle Scholar
  43. 43.
    Manogaran, G., and Lopez, D., Health data analytics using scalable logistic regression with stochastic gradient descent. International Journal of Advanced Intelligence Paradigms 9:1–15, 2016.Google Scholar
  44. 44.
    Manogaran, G., and Lopez, D., Disease surveillance system for big climate data processing and dengue transmission. International Journal of Ambient Computing and Intelligence 8(2):88–105, 2017.CrossRefGoogle Scholar
  45. 45.
    Thota, C., Manogaran, G., Lopez, D., and Vijayakumar, V., Big Data Security Framework for Distributed Cloud Data Centers. In Cybersecurity Breaches and Issues Surrounding Online Threat Protection (pp. 288–310). IGI Global, 2017.Google Scholar
  46. 46.
    Manogaran, G., Thota, C., Lopez, D., Vijayakumar, V., Abbas, K. M., and Sundarsekar, R., Big Data Knowledge System in Healthcare. In Internet of Things and Big Data Technologies for Next Generation Healthcare (pp. 133–157). Springer International Publishing, 2017.Google Scholar
  47. 47.
    Varatharajan, R., Manogaran, G., Priyan, M. K., and Sundarasekar, R., Wearable sensor devices for early detection of Alzheimer disease using dynamic time warping algorithm. Cluster Computing, 1–10, 2017.Google Scholar
  48. 48.
    Li, X., Wu, F., Khan, M. K., Xu, L., Shen, J., and Jo, M., A secure chaotic map-based remote authentication scheme for telecare medicine information systems. Future Generation Computer Systems, 2017.Google Scholar
  49. 49.
    Li, X., Niu, J., Kumari, S., Wu, F., Sangaiah, A. K., and Choo, K. K. R., A three-factor anonymous authentication scheme for wireless sensor networks in internet of things environments. Journal of Network and Computer Applications, 2017.Google Scholar
  50. 50.
    Varatharajan, R., Manogaran, G., Priyan, M. K., Balaş, V. E., and Barna, C., Visual analysis of geospatial habitat suitability model based on inverse distance weighting with paired comparison analysis. Multimedia Tools and Applications, 1–21, 2017.Google Scholar
  51. 51.
    Thota, C., Sundarasekar, R., Manogaran, G., Varatharajan, R., and Priyan, M. K., Centralized Fog Computing Security Platform for IoT and Cloud in Healthcare System. In Exploring the Convergence of Big Data and the Internet of Things (pp. 141–154). IGI Global, 2018.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Revathi Sundarasekar
    • 1
  • M. Thanjaivadivel
    • 2
  • Gunasekaran Manogaran
    • 3
  • Priyan Malarvizhi Kumar
    • 3
  • R. Varatharajan
    • 4
  • Naveen Chilamkurti
    • 5
  • Ching-Hsien Hsu
    • 6
  1. 1.Priyadarshini Engineering CollegeVelloreIndia
  2. 2.Veltech UniversityChennaiIndia
  3. 3.VIT UniversityVelloreIndia
  4. 4.Sri Ramanujar Engineering CollegeChennaiIndia
  5. 5.Latrobe UniversityBundooraAustralia
  6. 6.Chung Hua UniversityHsinchuTaiwan

Personalised recommendations