Journal of Medical Systems

, 42:200 | Cite as

A Hybrid Algorithm for Prediction of Varying Heart Rate Motion in Computer-Assisted Beating Heart Surgery

  • Saeed Mansouri
  • Farzam FarahmandEmail author
  • Gholamreza Vossoughi
  • Alireza Alizadeh Ghavidel
Systems-Level Quality Improvement
Part of the following topical collections:
  1. Systems-Level Quality Improvement


An essential requirement for performing robotic assisted surgery on a freely beating heart is a prediction algorithm which can estimate the future trajectory of the heart in the varying heart rate (HR) conditions of real surgery with a high accuracy. In this study, a hybrid amplitude modulation- (AM) and autoregressive- (AR) based algorithm was developed to enable estimating the global and local oscillations of the beating heart, raised from its major and minor physiological activities. The AM model was equipped with an estimator of the heartbeat frequency to compensate for the HR variations. The RMS of the prediction errors of the hybrid algorithm was in the range of 165–361 μm for the varying HR motion, 21% less than that of the single AM model. With the capability of providing highly accurate predictions in a wide range of HR variation, the hybrid model is promising for practical use in robotic assisted beating heart surgery.


Beating heart surgery Heart rate variability Hybrid prediction In vivo animal experiment 



This study was supported by grants from Iranian National Science Foundation (INSF), Research Centre for Biomedical Technologies and Robotics (grant number 29929), and Rajaie Cardiovascular Medical and Research Centre.


  1. 1.
    Pettinari, M., Navarra, E., Noirhomme, P., and Gutermann, H., The state of robotic cardiac surgery in Europe. Ann. Cardiothorac. Surg. 6:1–8, 2017. Scholar
  2. 2.
    Canale, L. S., and Bonatti J., Current state of robotically assisted coronary artery bypass surgery. In: Ţintoiu IC, Underwood MJ, Cook SP, Kitabata H, Abbas A (eds) Coron. Graft Fail. State Art. Springer International Publishing, pp 65–74, 2016.Google Scholar
  3. 3.
    Ginhoux, R., Gangloff, J., de Mathelin, M., Soler, L., Sanchez, M. M. A., and Marescaux, J., Active filtering of physiological motion in robotized surgery using predictive control. IEEE Trans. Robot 21:67–79, 2005. Scholar
  4. 4.
    Cavusoglu, M. C., Rotella, J., Newman, W. S., Choi, S., Ustin, J., and Sastry, S. S., Control algorithms for active relative motion cancelling for robotic assisted off-pump coronary artery bypass graft surgery. In: ICAR ‘05. Proceedings., 12th Int. Conf. Adv. Robot. IEEE, pp 431–436, 2005.Google Scholar
  5. 5.
    Bachta, W., Renaud, P., Cuvillon, L., Laroche, E., Forgione, A., and Gangloff, J., Motion prediction for computer-assisted beating heart surgery. IEEE Trans. Biomed. Eng. 56:2551–2563, 2009. Scholar
  6. 6.
    Franke, T. J., Bebek, O., and Cavusoglu, M. C., Improved prediction of heart motion using an adaptive filter for robot assisted beating heart surgery. In: 2007 IEEE/RSJ Int. Conf. Intell. Robot. Syst. IEEE, pp 509–515, 2007.Google Scholar
  7. 7.
    Richa, R., Bo, A. P. L., and Poignet, P., Motion prediction for tracking the beating heart. 2008 30th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. IEEE 3261–3264, 2008.Google Scholar
  8. 8.
    Franke, T. J., Bebek, O., and Cavusoglu, M. C., Prediction of heartbeat motion with a generalized adaptive filter. 2008 IEEE Int. Conf. Robot. Autom. IEEE: 2916–2921, 2008.Google Scholar
  9. 9.
    Tuna, E. E., Franke, T. J., Bebek, O., Shiose, A., Fukamachi, K., and Cavusoglu, M. C., Heart motion prediction based on adaptive estimation algorithms for robotic-assisted beating heart surgery. IEEE Trans. Robot. 29:261–276, 2013. Scholar
  10. 10.
    Liang, F., Yu, Y., Wang, H., and Meng, X., Heart motion prediction in robotic-assisted beating heart surgery: A nonlinear fast adaptive approach. Int. J. Adv. Robot. Syst. 10:82, 2013. Scholar
  11. 11.
    Liang, F., Meng, X., and Yu, Y., Multivariate autoregressive model based heart motion prediction approach for beating heart surgery. Int. J. Adv. Robot. Syst. 10:129, 2013. Scholar
  12. 12.
    Bebek, O., and Cavusoglu, M. C., Intelligent control algorithms for robotic-assisted beating heart surgery. IEEE Trans. Robot. 23:468–480, 2007. Scholar
  13. 13.
    Bowthorpe, M., Tavakoli, M., Becher, H., and Howe, R., Smith predictor-based robot control for ultrasound-guided teleoperated beating-heart surgery. IEEE J. Biomed. Heal. Inform. 18:157–166, 2014. Scholar
  14. 14.
    Cuvillon, L., Gangloff, J., de Mathelin, M., and Forgione, A., Toward robotized beating heart TECABG: Assessment of the heart dynamics using high-speed vision. Proc. Med. Image Comput. Comput. Interv. Palm Springs, USA: 551–558, 2005.Google Scholar
  15. 15.
    Duindam, V., and Sastry, S., Geometric motion estimation and control for robotic-assisted beating-heart surgery. 2007 IEEE/RSJ Int. Conf. Intell. Robot. Syst. IEEE: 871–876, 2007.Google Scholar
  16. 16.
    Thakral, A., Wallace, J., Tomlin, D., Seth, N., and Thakor, N. V., Surgical motion adaptive robotic technology (S.M.A.R.T): taking the motion out of physiological motion. Med. Image Comput. Comput. Interv. 317–325, 2001.Google Scholar
  17. 17.
    Yuen, S. G., Novotny, P. M., Howe, R. D., Quasiperiodic predictive filtering for robot-assisted beating heart surgery. 2008 IEEE Int. Conf. Robot. Autom. IEEE. 3875–3880, 2008.Google Scholar
  18. 18.
    Yuen, S. G., Kettler, D. T., Novotny, P. M., Plowes, R. D., and Howe, R. D., Robotic motion compensation for beating heart intracardiac surgery. Int. J. Rob. Res. 28:1355–1372, 2009. Scholar
  19. 19.
    Richa, R., Bó, A. P. L., and Poignet, P., Beating heart motion prediction for robust visual tracking. 2010 IEEE Int. Conf. Robot. Autom. IEEE. 4579–4584, 2010.Google Scholar
  20. 20.
    Richa, R., Bó, A. P. L., and Poignet, P., Towards robust 3D visual tracking for motion compensation in beating heart surgery. Med. Image Anal. 15:302–315, 2011. Scholar
  21. 21.
    Yang, B., Liu, C., Zheng, W., and Liu, S., Motion prediction via online instantaneous frequency estimation for vision-based beating heart tracking. Inf. Fusion 35:58–67, 2017. Scholar
  22. 22.
    Yang, B., Cao, T., and Zheng, W., Beating heart motion prediction using iterative optimal sine filtering. 2017 10th Int. Congr. Image Signal Process. Biomed. Eng. Informatics. IEEE. 1–5, 2017.Google Scholar
  23. 23.
    Liang, F., and Meng, X., A quadratic nonlinear prediction-based heart motion model following control algorithm in robotic-assisted beating heart surgery. Int. J. Adv. Robot Syst. 10:1, 2013. Scholar
  24. 24.
    Liang, F., Yu, Y., Cui, S., Zhao, L., and Wu, X., Heart motion uncertainty compensation prediction method for robot assisted beating heart surgery - master-slave Kalman filters approach. J. Med. Syst. 38:52, 2014. Scholar
  25. 25.
    Shiogai, Y., Stefanovska, a., and McClintock, P. V. E., Nonlinear dynamics of cardiovascular ageing. Phys. Rep. 488:51–110, 2010. Scholar
  26. 26.
    Mansouri, S., Farahmand, F., Vossoughi, G., Ghavidel, A. A., and Rezayat, M., Feasibility of infrared tracking of beating heart motion for robotic assisted beating heart surgery. Int. J. Med. Robot Comput. Assist. Surg. 14:e1869, 2018. Scholar
  27. 27.
    Haykin, S., Adaptive filter theory. 4th edition. New Jersey: Prentice Hall, 2001.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringSharif University of TechnologyTehranIran
  2. 2.RCBTR, Tehran University of Medical SciencesTehranIran
  3. 3.Heart Valve Disease Research Center, Rajaie Cardiovascular Medical and Research CenterIran University of Medical SciencesTehranIran

Personalised recommendations