State of the Art on the Use of Portable Digital Devices to Assess Stress in Humans

  • Alberto Bellido
  • Pablo Ruisoto
  • Ana Beltran-Velasco
  • Vicente Javier Clemente-Suárez
Education & Training
  • 33 Downloads
Part of the following topical collections:
  1. Emergent Visualization Systems in Biomedical Sciences (TEEM 2017)

Abstract

The aim of this study is to review the current tools for the assessment of stress response in humans, ranging from the use of psychological questionnaires to the latest tools involving portable digital devices. Practical implications in educational context are further discussed.

Keywords

Stress Measurement Digital Portable Psychophysiology Clinical psychology training 

Notes

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

References

  1. 1.
    McEwen, B. S., Protective and damaging effects of stress mediators: Central role of the brain. Dialogues Clin Neuropsi 8:367–381, 2006.Google Scholar
  2. 2.
    Pizolato, R. A., Sandhu, J. S., Bansal, H., and Dua, V., Anxiety/depression and orofacial myofascial disorders as factors associated with TMD in children. Braz Oral Res 27:156–162, 2014.CrossRefGoogle Scholar
  3. 3.
    Sandhu, S. V., Sandhu, J. S., Bansai, H., and Dua, V., Oral lichen planus and stress: An appraisal. Contemp Clin Dent 5(3):352–356, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Simon, G. E., VonKorff, M., Piccinelli, M., Fullerton, C., and Ormel, J., An international study of the relation between somatic symptoms and depression. N Engl J Med 341(18):1329–1335, 1999.CrossRefPubMedGoogle Scholar
  5. 5.
    Cohen, S., Janicki-Deverts, D., and Miller, G. E., Psychological stress and disease. JAMA 298(14):1685–1687, 2007.CrossRefPubMedGoogle Scholar
  6. 6.
    Macan, T. H., Shahani, C., Dipboye, R. L., and Pillips, A. P., College students' time management: Correlations with academic performance and stress. J. Educ. Psychol 82(4):760–768, 1990.CrossRefGoogle Scholar
  7. 7.
    Nikolaou, I., and Tsaousis, I., Emotional intelligence in the workplace: Exploring its effects on occupational stress and organizational commitment. Int J Organ Anal 10(4):327–342, 2002.CrossRefGoogle Scholar
  8. 8.
    Lazarus, R. S., How emotions influence performance in competitive sports. Sport Psychol 14(3):229–252, 2000.CrossRefGoogle Scholar
  9. 9.
    Pillai, V., Roth, T., Mullins, H. M., and Drake, D. L., Moderators and mediators of the relationship between stress and insomnia: Stressor chronicity, cognitive intrusion and coping. Sleep 37(7):1199–1208, 2014.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Selye, H., The stress of life. New York: McGraw-Hill, 1956.Google Scholar
  11. 11.
    Lazarus, R. S., Psychological stress and the coping process. New York: McGraw-Hill, 1966, 466.Google Scholar
  12. 12.
    Spielberger, C. D., Gorsuch, R. L., and Lushene, R. E., STAI Manual for the Stait-Trait Anxiety Inventory ("self-evaluation Questionnaire"). Palo Alto: Consulting Psychologists Press, 1970.Google Scholar
  13. 13.
    Taylor, J. A., A personality scale of manifest anxiety. J Abnorm Soc Psychol 48(2):285–290, 1953.CrossRefGoogle Scholar
  14. 14.
    Miguel, J. J, Cano, A., Manual del Inventario de Situaciones y Respuestas de Ansiedad –ISRA- TEA, Madrid, 1986.Google Scholar
  15. 15.
    Cohen, S., Kamarck, T., and Mermelstein, R., A global measure of perceived stress. J Health Soc Behav 24:385–396, 1983.CrossRefPubMedGoogle Scholar
  16. 16.
    Charmandari, E., Tsygos, C., and Chrousos, G., Endocrinology of the stress response. Annu Rev Physiol 67(1):259–284, 2005.  https://doi.org/10.1146/annurev.physiol.67.040403.120816.CrossRefPubMedGoogle Scholar
  17. 17.
    Duchesne, A., and Pruessner, J. C., Association between subjective and cortisol stress response depends on the menstrual cycle phase. Psychoneuroendocrinology 38(12):3155–2159, 2013.  https://doi.org/10.1016/j.psyneuen.2013.08.009.CrossRefPubMedGoogle Scholar
  18. 18.
    Kudielka, B. M., Hellhammer, D. H., and Wüst, S., Why do we respond so differently. Reviewing determinants of human salivary cortisol responses to challenge. Psychoneuroendocrinology 34(1):2–18, 2009.  https://doi.org/10.1016/j.psyneuen.2008.10.004.CrossRefPubMedGoogle Scholar
  19. 19.
    Cannon, W. B., Stresses and strains of homeostasis (Mary Scott Newbold lecture). Am J Med Sci 189:1–14, 1985.Google Scholar
  20. 20.
    Lahiri, M. K., Kannankeril, P. J., and Goldberger, J. J., Assessment of autonomic function in cardiovascular disease: physiological basis and prognostic implications. J Am Coll Cardiol 51(18):1725–1733, 2008.  https://doi.org/10.1016/j.jacc.2008.01.038.CrossRefPubMedGoogle Scholar
  21. 21.
    Billman, G. E., The effect of heart rate on the heart rate variability response to autonomic interventions. Front Physiol 26(4):222, 2013.  https://doi.org/10.3389/fphys.2013.00222.Google Scholar
  22. 22.
    Martin, L. A., Doster, J. A., Critelli, J. W., Purdum, M., Powers, C., Lambert, P. L., and Miranda, V., The ‘distressed’ personality, coping and cardiovascular risk. Stress Health 27(1):64–72, 2011.  https://doi.org/10.1002/smi.1320.CrossRefGoogle Scholar
  23. 23.
    Thayer, J. F., and Lane, R. D., The role of vagal function in the risk for cardiovascular disease and mortality. Biol Psychol 74(2):224–242, 2007.  https://doi.org/10.1016/j.biopsycho.2005.11.013.CrossRefPubMedGoogle Scholar
  24. 24.
    Robertson, A. H., King, K., Ritchie, S. D., Gauthier, A. P., Laurence, M., and Dorman, H. M., Validating the use of heart rate variability for estimating energy expenditure. Int J Hum Mov Sports Sci 3(2):19–26, 2015.  https://doi.org/10.13189/saj.2015.030203.Google Scholar
  25. 25.
    Chen, Y. Y., Gilligan, S., Coups, E. J., and Contrada, R. J., Hostility and perceived social support: Interactive effects on cardiovascular reactivity to laboratory stressors. Ann Behav Med 29(1):37–43, 2005.  https://doi.org/10.1207/s15324796abm2901_6.CrossRefPubMedGoogle Scholar
  26. 26.
    Ramaekers, D., Ector, H., Demyttenaere, K., Rubens, A., and Van de Werf, F., Association between cardiac autonomic function and coping style in healthy subjects. Pacing Clin Electrophysiol 21(8):1546–1552, 1998.CrossRefPubMedGoogle Scholar
  27. 27.
    Denollet, J., Type D personality. A potential risk factor refined. J Psychosom Res 49(4):255–266, 2000.CrossRefPubMedGoogle Scholar
  28. 28.
    Lin, I. M., Wang, S. Y., Chu, I. H., Lu, Y. H., Lee, C. S., Lin, T. H., and Fan, S. Y., The Association of Type D personality with heart rate variability and lipid profiles among patients with coronary artery disease. Int J Behav Med 24(1):101–109, 2017.  https://doi.org/10.1007/s12529-016-9571-x.CrossRefPubMedGoogle Scholar
  29. 29.
    Buros, J. L., Ciaglo, L. N., Filopei, J., Gibson, C. M., Harrigan, C. J., Lewis, J., Lew, M. E., Murphy, S. A., Southard, M. C., and Takao, S., Diagnostic and prognostic value of ambulatory ECG (Holter) monitoring in patients with coronary heart disease: A review. J Thromb Thrombolysis 23(2):135–145, 2006.  https://doi.org/10.1007/s11239-006-9015-6.Google Scholar
  30. 30.
    Jovanov, E., Lords, A. O., Raskovic, D., Cox, P. G., Adhami, R., and Andrasik, F., Stress monitoring using a distributed wireless intelligent sensor system. IEEE Eng Med Biol Mag 22(3):49–55, 2003.CrossRefPubMedGoogle Scholar
  31. 31.
    Giles, D., Draper, N., and Neil, W., Validity of the polar V800 heart rate monitor to measure RR intervals at rest. Eur J Appl Physiol 116(3):563–571, 2016.  https://doi.org/10.1007/s00421-015-3303-9.CrossRefPubMedGoogle Scholar
  32. 32.
    Firstbeat Technologies Ltd., An energy expenditure estimation method based on heart rate measurement. Jyväskylä: Firstbeat Technologies Ltd, 2007.Google Scholar
  33. 33.
    Vrijkotte, T. G., van Doornen, L. J., and de Geus, E. J., Effects of work stress on ambulatory blood pressure, heart rate, and heart rate variability. Hypertension 35(4):880–886, 2000.CrossRefPubMedGoogle Scholar
  34. 34.
    Bojan, M., Nikić, M. D., and Willis, M. S., JEPonline heart rate variability (HRV) as a tool for diagnostic and monitoring performance in sport and physical activities. Physiol. Mea 16(3):103–131, 2013.  https://doi.org/10.1088/0967-3334/35/7/1319.Google Scholar
  35. 35.
    Derman, W. E., Prinsloo, G. E., and Rauch, H. G., A brief review and clinical application of heart rate variability biofeedback in sports, exercise, and rehabilitation medicine. Phys Sportsmed 42(2):88–99, 2014.  https://doi.org/10.3810/psm.2014.05.2061.CrossRefPubMedGoogle Scholar
  36. 36.
    Agnihotri, H., Paul, M., and Singh Sandhu, J., Biofeedback approach in the treatment of generalized anxiety disorder. Iran J Psyc 2:90–95, 2007.Google Scholar
  37. 37.
    Begemann, M. J. H., Florisse, E. J. R., Van Lutterveld, R., Kooyman, M., and Sommer, I. E., Efficacy of EEG neurofeedback in psychiatry: A comprehensive overview and meta-analysis. Transl. Brain Rhythmicity 1(1):19–29, 2016.  https://doi.org/10.15761/TBR.1000105.CrossRefGoogle Scholar
  38. 38.
    Sánchez-Molina, J., Robles-Pérez, J. J., and Clemente-Suárez, V. J., Assessment of psychophysiological response and specific fine motor skills in combat units. J Med Syst 42(4):67, 2018.CrossRefPubMedGoogle Scholar
  39. 39.
    Delgado-Moreno, R., Robles-Pérez, J. J., and Clemente-Suárez, V. J., Combat stress decreases memory of warfighters in action. J Med Syst 41(8):124, 2017.CrossRefPubMedGoogle Scholar
  40. 40.
    Clemente-Suarez, V., Robles-Pérez, J. J., and Fernández-Lucas, J., Psychophysiological response in parachute jumps, the effect of experience and type of jump. Physiol. Behav 179:178–183, 2017.CrossRefPubMedGoogle Scholar
  41. 41.
    Clemente-Suárez, V. J., Robles-Pérez, J. J., and Fernández-Lucas, J., Psycho-physiological response in an automatic parachute jump. J Sports Sci 35(19):1872–1878, 2017.CrossRefPubMedGoogle Scholar
  42. 42.
    Clemente-Suarez, V. J., Robles-Pérez, J. J., Herrera-Mendoza, K., Herrera-Tapias, B., and Fernández-Lucas, J., Psychophysiological response and fine motor skills in high-altitude parachute jumps. High Alt Med Biol 18(4):392–399, 2017.CrossRefPubMedGoogle Scholar
  43. 43.
    Clemente-Suarez, V. J., Palomera, P. R., and Robles-Pérez, J. J., Psychophysiological response to acute-high-stress combat situations in professional soldiers. Stress Health, 2017.  https://doi.org/10.1002/smi.2778.
  44. 44.
    Clemente-Suarez, V. J., Periodized training archive better autonomic modulation and aerobic performance than non periodized training. J Sports Med Phys Fitness, 2017.  https://doi.org/10.23736/S0022-4707.17.07582-X.
  45. 45.
    Clemente-Suárez, V. J., Dalamitros, A. A., and Nikolaidis, P. T., The effect of a short-term training period on physiological parameters and running performance: Intensity distribution versus constant-intensity exercise. J Sports Med Phys Fitness 58(1–2):1–7, 2018.  https://doi.org/10.23736/S0022-4707.16.06756-6.PubMedGoogle Scholar
  46. 46.
    Clemente-Suarez, V. J, Arroyo-Toledo, J. J., Traditional periodization upgrade sport performance and heart rate variability of experienced triathletes. Imp. J. Interdiscip. Res 3 (6), 2017.Google Scholar
  47. 47.
    Clemente-Suárez, V. J., Dalamitros, A., Ribeiro, J., Sousa, A., Fernandes, R. J., and Vilas-Boas, J. P., The effects of two different swimming training periodization on physiological parameters at various exercise intensities. J Sport Sci 17(4):425–432, 2017.Google Scholar
  48. 48.
    Brauer, A., and Barlow, D., Biofeedback and anxiety. Psychiatr Times 16(2):1–2, 1999.Google Scholar
  49. 49.
    Dillon, A., Kelly, M., Robertson, I. H., and Robertson, D. A., Smartphone applications utilizing biofeedback can aid stress reduction. Front Psychol 17(7):832, 2016.  https://doi.org/10.3389/fpsyg.2016.00832.Google Scholar
  50. 50.
    Yap, K., Bearman, M., Thomas, N., and Hay, M., Clinical psychology students´ experiences of a pilot objective structured clinical examination. Aust Psychol 48:165–173, 2012.CrossRefGoogle Scholar
  51. 51.
    Diamond, A., Executive functions. Annu Rev Psychol 64(1):135–168, 2013.CrossRefPubMedGoogle Scholar
  52. 52.
    Tsigos, C., and Chrousos, G. P., Hypothalamic–pituitary–adrenal axis, neuroendocrine factors and stress. J Psychosom Res 53(4):865–871, 2002.  https://doi.org/10.1016/S0022-3999(02)00429-4.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Alberto Bellido
    • 1
  • Pablo Ruisoto
    • 2
  • Ana Beltran-Velasco
    • 1
  • Vicente Javier Clemente-Suárez
    • 3
  1. 1.Department of PsychologyEuropean University of MadridMadridSpain
  2. 2.Department of Basic Psychology, Psychobiology and Methodology of Behavioral SciencesUniversity ofSalamancaSalamancaSpain
  3. 3.Applied Psychology Research GroupEuropean University of MadridMadridSpain

Personalised recommendations