Advertisement

Local and Parallel Multigrid Method for Nonlinear Eigenvalue Problems

  • Fei XuEmail author
  • Qiumei Huang
Article
  • 40 Downloads

Abstract

In this paper, a new type of local and parallel algorithm is proposed to solve nonlinear eigenvalue problem based on multigrid discretization. Instead of solving the nonlinear eigenvalue problem directly in each level mesh, our method converts the nonlinear eigenvalue problem in the finest mesh to a linear boundary value problem on each level mesh and some nonlinear eigenvalue problems on the coarsest mesh. Further, the involved linear boundary value problems are solved using the local and parallel strategy. As no nonlinear eigenvalue problem is being solved directly on the fine spaces, which is time-consuming, this new type of local and parallel multigrid method evidently improves the efficiency of nonlinear eigenvalue problem solving. We provide a rigorous theoretical analysis for our algorithm and present details on numerical simulations to support our theory.

Keywords

Nonlinear eigenvalue problem Local and parallel Finite element method Multilevel correction method 

Notes

References

  1. 1.
    Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)zbMATHGoogle Scholar
  2. 2.
    Babuška, I., Rheinboldt, W.: Error estimates for adaptive finite element computations. SIAM J. Numer. Anal. 15, 736–754 (1978) MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Babuška, I., Rheinboldt, W.: A-posteriori error estimates for the finite element method. Int. J. Numer. Methods Eng. 12, 1597–1615 (1978)zbMATHCrossRefGoogle Scholar
  4. 4.
    Bao, G., Hu, G., Liu, D.: An h-adaptive finite element solver for the calculations of the electronic structures. J. Comput. Phys. 231(14), 4967–4979 (2012)zbMATHCrossRefGoogle Scholar
  5. 5.
    Bao, W.: The nonlinear Schröinger equation and applications in Bose–Einstein condensation and plasma physics, Master Review, Lecture Note Series, vol. 9. IMS, NUS (2007)Google Scholar
  6. 6.
    Bao, W., Du, Q.: Computing the ground state solution of Bose–Einstein condensates by a normalized gradient flow. SIAM J. Sci. Comput. 25, 1674–1697 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Bi, H., Yang, Y., Li, H.: Local and parallel finite element discretizations for eigenvalue problems. SIAM J. Sci. Comput. 15(6), A2575–A2597 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Bornemann, F., Erdmann, B., Kornhuber, R.: A posteriori error estimates for elliptic problems in two and three space dimensions. SIAM J. Numer. Anal. 33(3), 1188–1204 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Bramble, J.H., Pasciak, J.E.: New convergence estimates for multigrid algorithms. Math. Comput. 49, 311–329 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Bramble, J.H., Zhang, X.: The analysis of multigrid methods. In: Handbook of Numerical Analysis, pp. 173–415 (2000)zbMATHGoogle Scholar
  11. 11.
    Brenner, S., Scott, L.: The Mathematical Theory of Finite Element Methods. Springer, New York (1994)zbMATHCrossRefGoogle Scholar
  12. 12.
    Cancès, E., Chakir, R., Maday, Y.: Numerical analysis of nonlinear eigenvalue problems. J. Sci. Comput. 45, 90–117 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Cascon, J., Kreuzer, C., Nochetto, R., Siebert, K.: Quasi-optimal convergence rate for an adaptive finite element method. SIAM J. Numer. Anal. 46(5), 2524–2550 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Chen, H., Dai, X., Gong, X., He, L., Yang, Z., Zhou, A.: Adaptive finite element approximations for Kohn–Sham models. Multiscale Model. Simul. 12(4), 1828–1869 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Chen, H., Gong, X., He, L., Yang, Z., Zhou, A.: Numerical analysis of finite dimensional approximations of Kohn–Sham models. Adv. Comput. Math. 38, 225–256 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Chen, H., He, L., Zhou, A.: Finite element approximations of nonlinear eigenvalue problems in quantum physics. Comput. Methods Appl. Mech. Eng. 200(21), 1846–1865 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Chen, H., Xie, H., Xu, F.: A full multigrid method for eigenvalue problems. J. Comput. Phys. 322, 747–759 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)zbMATHGoogle Scholar
  19. 19.
    Dong, X., He, Y., Wei, H., Zhang, Y.: Local and parallel finite element algorithm based on the partition of unity method for the incompressible MHD flow. Adv Comput. Math. 44(4), 1295–1319 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Dórfler, W.: A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33(3), 1106–1124 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Du, G., Hou, Y., Zuo, L.: A modified local and parallel finite element method for the mixed Stokesš–Darcy model. J. Math. Anal. Appl. 435(2), 1129–1145 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985)zbMATHGoogle Scholar
  23. 23.
    Hackbusch, W.: Multi-grid Methods and Applications. Springer, Berlin (1985)zbMATHCrossRefGoogle Scholar
  24. 24.
    Harrison, R., Moroz, I., Tod, K.P.: A numerical study of the Schrödinger–Newton equations. Nonlinearity 16, 101–122 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    He, Y., Xu, J., Zhou, A.: Local and parallel finite element algorithms for the Navier–Stokes problem. J. Comput. Math. 24(3), 227–238 (2006)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Hu, G., Xie, H., Xu, F.: A multilevel correction adaptive finite element method for Kohn–Sham equation. J. Comput. Phys. 355, 436–449 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Jia, S., Xie, H., Xie, M., Xu, F.: A full multigrid method for nonlinear eigenvalue problems. Sci. China Math. 59, 2037–2048 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Li, Y., Han, X., Xie, H., You, C.: Local and parallel finite element algorithm based on multilevel discretization for eigenvalue problem. Int. J. Numer. Anal. Model. 13(1), 73–89 (2016)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Lin, Q., Xie, H.: An observation on Aubin–Nitsche lemma and its applications. Math. Pract. Theory 41(17), 247–258 (2011)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Lin, Q., Xie, H.: A multi-level correction scheme for eigenvalue problems. Math. Comput. 84(291), 71–88 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Martin, R.: Electronic Structure: Basic Theory and Practical Methods. Cambridge University Press, London (2004)zbMATHCrossRefGoogle Scholar
  32. 32.
    Mekchay, K., Nochetto, R.: Convergence of adaptive finite element methods for general second order linear elliptic PDEs. SIAM J. Numer. Anal. 43, 1803–1827 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Morin, P., Nochetto, R., Siebert, K.: Convergence of adaptive finite element methods. SIAM Rev. 44(4), 631–658 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Parr, R., Yang, M.: Density Functional Theory of Atoms and Molecules. Oxford University Press, New York (1994)Google Scholar
  35. 35.
    Schatz, A., Wahlbin, L.: Interior maximum-norm estimates for finite element methods, part II. Math. Comput. 64, 907–928 (1995)zbMATHGoogle Scholar
  36. 36.
    Scott, L., Zhang, S.: Higher dimensional non-nested multigrid methods. Math. Comput. 58, 457–466 (1992)zbMATHCrossRefGoogle Scholar
  37. 37.
    Shaidurov, V.: Multigrid Methods for Finite Elements. Springer, Berlin (1995)zbMATHCrossRefGoogle Scholar
  38. 38.
    Stevension, R.: Optimality of a standard adaptive finite element method. Found. Math. Comput. 7(2), 245–269 (2007)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Sulem, C., Sulem, P.: The Nonlinear Schrödinger Equation: Self-Focusing and Wave Collapse. Springer, New York (1999)zbMATHGoogle Scholar
  40. 40.
    Xie, H.: A multigrid method for eigenvalue problem. J. Comput. Phys. 274, 550–561 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Xu, J.: Iterative methods by space decomposition and subspace correction. SIAM Rev. 34(4), 581–613 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Xu, J., Zhou, A.: Local and parallel finite element algorithms based on two-grid discretizations. Math. Comput. 69(231), 881–909 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Xu, J., Zhou, A.: A two-grid discretization scheme for eigenvalue problems. Math. Comput. 70(233), 17–25 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Xu, J., Zhou, A.: Local and parallel finite element algorithm for eigenvalue problems. Acta Math. Appl. Sin. Engl. Ser. 18(2), 185–200 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    Yserentant, H.: On the regularity of the electronic Schrǒdinger equation in Hilbert spaces of mixed derivatives. Numer. Math. 98(4), 731–759 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Zhao, R., Yang, Y., Bi, H.: Local and parallel finite element method for solving the biharmonic eigenvalue problem of plate vibration. Numer. Methods Partial Differ. Equ. 35(2), 851–869 (2019)MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    Zheng, H., Shi, F., Hou, Y., Zhao, J., Cao, Y., Zhao, R.: New local and parallel finite element algorithm based on the partition of unity. J. Math. Anal. Appl. 435(1), 1–19 (2016)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Beijing Institute for Scientific and Engineering Computing, College of Applied SciencesBeijing University of TechnologyBeijingChina

Personalised recommendations