Journal of Scientific Computing

, Volume 81, Issue 3, pp 2388–2412 | Cite as

Virtual Element Method for an Elliptic Hemivariational Inequality with Applications to Contact Mechanics

  • Fang Feng
  • Weimin Han
  • Jianguo HuangEmail author


This paper is on the numerical solution of an elliptic hemivariational inequality by the virtual element method. We introduce an abstract framework of the numerical method and provide an error analysis. We then apply the virtual element method to solve two contact problems: a bilateral contact problem with friction and a frictionless normal compliance contact problem. Error estimates of their numerical solutions are derived, which are of optimal order for the linear virtual element method, under appropriate solution regularity assumptions. The discrete problem can be formulated as an optimization problem for a difference of two convex (DC) functions, and a convergent algorithm is introduced to solve it. Numerical examples are reported to show the performance of the proposed methods.


Virtual element method Hemivariational inequality Error estimate Double bundle method 



The authors would like to thank the referees for their valuable suggestions and comments on an early version of the paper.


  1. 1.
    Ahmad, B., Alsaedi, A., Brezzi, F., Marini, L.D., Russo, A.: Equivalent projectors for virtual element methods. Comput. Math. Appl. 66(3), 376–391 (2013)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Artioli, E., Beirao Da Veiga, L., Lovadina, C., et al.: Arbitrary order 2D virtual elements for polygonal meshes: part I, elastic problem. Comput. Mech. 60(3), 355–377 (2017)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Barboteu, M., Bartosz, K., Han, W., Janiczko, T.: Numerical analysis of a hyperbolic hemivariational inequality arising in dynamic contact. SIAM J. Numer. Anal. 53(1), 527–550 (2015)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Barboteu, M., Bartosz, K., Kalita, P.: An analytical and numerical approach to a bilateral contact problem with nonmonotone friction. Int. J. Appl. Math. Comput. Sci. 23(2), 263–276 (2013)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Beirao Da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., et al.: Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23(1), 199–214 (2013)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Beirao Da Veiga, L., Brezzi, F., Marini, L.D.: Virtual elements for linear elasticity problems. SIAM J. Numer. Anal. 51(2), 794–812 (2013)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Beirao Da Veiga, L., Brezzi, F., Marini, L.D., Russo, A.: The Hitchhiker’s guide to the virtual element method. Math. Models Methods Appl. Sci. 24(8), 1541–1573 (2014)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Beirao Da Veiga, L., Lovadina, C., Russo, A.: Stability analysis for the virtual element method. Math. Models Methods Appl. Sci. 27(13), 2557–2594 (2017)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Brenner, S.C.: Korn’s inequalities for piecewise \(H^1\) vector fields. Math. Comput. 73(247), 1067–1087 (2004)CrossRefGoogle Scholar
  10. 10.
    Brenner, S.C., Guan, Q., Sung, L.: Some estimates for virtual element methods. Comput. Methods Appl. Math. 17(4), 553–574 (2017)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Brenner, S.C., Sung, L.: Virtual element methods on meshes with small edges or faces. Math. Models Methods Appl. Sci. 28(7), 1291–1336 (2018)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, 3rd edn. Springer, New York (2008)CrossRefGoogle Scholar
  13. 13.
    Brezzi, F., Buffa, A., Lipnikov, K.: Mimetic finite differences for elliptic problems. ESAIM: Math. Model. Numer. Anal. 43, 277–295 (2009)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Chen, L., Huang, J.: Some error analysis on virtual element methods. Calcolo 55(1), 5 (2018)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)zbMATHGoogle Scholar
  16. 16.
    Denkowski, Z., Migorski, S., Papageorgiou, N.S.: An Introduction to Nonlinear Analysis: Theory. Kluwer Academic Publishers, Boston (2003)CrossRefGoogle Scholar
  17. 17.
    Feng, F., Han, W., Huang, J.: Virtual element methods for elliptic variational inequalities of the second kind. J. Sci. Comput. 80, 60–80 (2019)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Han, W.: Numerical analysis of stationary variational–hemivariational inequalities with applications in contact mechanics. Math. Mech. Solids 23(3), 279–293 (2018)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Han, W., Migorski, S., Sofonea, M.: A class of variational-hemivariational inequalities with applications to frictional contact problems. SIAM J. Math. Anal. 46(6), 3891–3912 (2014)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Han, W., Sofonea, M., Barboteu, M.: Numerical analysis of elliptic hemivariational inequalities. SIAM J. Numer. Anal. 55(2), 640–663 (2017)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Han, W., Sofonea, M., Danan, D.: Numerical analysis of stationary variational-hemivariational inequalities. Numer. Math. 139, 563–592 (2018)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Haslinger, J., Miettinen, M., Panagiotopoulos, P.D.: Finite Element Method for Hemivariational Inequalities. Theory, Methods and Applications. Kluwer Academic, Dordrecht (1999)CrossRefGoogle Scholar
  23. 23.
    Joki, K., Bagirov, A.M., Karmitsa, N., et al.: Double bundle method for finding Clarke stationary points in nonsmooth DC programming. SIAM J. Optim. 28(2), 1892–1919 (2018)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Laursen, T.: Computational Contact and Impact Mechanics. Springer, New York (2002)zbMATHGoogle Scholar
  25. 25.
    Migorski, S., Ochal, A., Sofonea, M.: Nonlinear Inclusions and Hemivariational Inequalities. Springer, New York (2013)CrossRefGoogle Scholar
  26. 26.
    Naniewicz, Z., Panagiotopoulos, P.D.: Mathematical Theory of Hemivariational Inequalities and Applications. Marcel Dekker, New York (1995)zbMATHGoogle Scholar
  27. 27.
    Panagiotopoulos, P.D.: Hemivariational Inequalities, Applications in Mechanics and Engineering. Springer, Berlin (1993)CrossRefGoogle Scholar
  28. 28.
    Panagiotopoulos, P.D.: Nonconvex energy functions, hemivariational inequalities and substationarity principles. Acta Mech. 48(3–4), 111–130 (1983)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Sutton, O.J.: The virtual element method in 50 lines of MATLAB. Numer. Algorithms 75, 1141–1159 (2017)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Talischi, C., Paulino, G.H., Pereira, A., Menezes, I.F.M.: PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab. Struct. Multidiscip. Optim. 45(3), 309–328 (2012)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Wang, F., Wei, H.: Virtual element method for simplified friction problem. Appl. Math. Lett. 85, 125–131 (2018)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Wang, F., Wei, H.: Virtual element methods for the obstacle problem. IMA J. Numer. Anal. (2018). CrossRefGoogle Scholar
  33. 33.
    Wriggers, P.: Computational Contact Mechanics, 2nd edn. Springer, Berlin (2006)CrossRefGoogle Scholar
  34. 34.
    Zeidler, E.: Nonlinear Functional Analysis and Its Applications. II/B: Nonlinear Monotone Operators. Springer, New York (1990)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Mathematical Sciences, and MOE-LSCShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Department of MathematicsUniversity of IowaIowa CityUSA

Personalised recommendations