# A Finite Element/Operator-Splitting Method for the Numerical Solution of the Three Dimensional Monge–Ampère Equation

Article

## Abstract

In the present article we extend to the three-dimensional elliptic Monge–Ampère equation the method discussed in Glowinski et al. (J Sci Comput 79:1–47, 2019) for the numerical solution of its two-dimensional variant. As in Glowinski et al. (2019) we take advantage of an equivalent divergence formulation of the Monge–Ampère equation, involving the cofactor matrix of the Hessian of the solution. We associate with the above divergence formulation an initial value problem, well suited to time discretization by operator splitting and space approximation by low order mixed finite element methods. An important ingredient of our methodology is forcing the positive semi-definiteness of the approximate Hessian by a hard thresholding eigenvalue projection. The resulting method is robust and easy to implement. It can handle problems with smooth and non-smooth solutions on domains with curved boundary. Using piecewise affine approximations for the solution and its six second-order derivatives, one can achieve second-order convergence rates for problems with smooth solutions.

## References

1. 1.
Awanou, G.: Pseudo transient continuation and time marching methods for Monge–Ampère type equations. Adv. Comput. Math. 41(4), 907–935 (2015)
2. 2.
Bakelman, I.J.: Convex Analysis and Nonlinear Geometric Elliptic Equations. Springer, Berlin (2012)
3. 3.
Benamou, J., Brenier, Y.: A computational fluid mechanics solution to the Monge–Kantorovich mass transfer problem. Numer. Math. 84(3), 375–393 (2000)
4. 4.
Böhmer, K.: On finite element methods for fully nonlinear elliptic equations of second order. SIAM J. Numer. Anal. 46(3), 1212–1249 (2008)
5. 5.
Brenner, S., Gudi, T., Neilan, M., Sung, L.: $${C}^0$$ penalty methods for the fully nonlinear Monge–Ampère equation. Math. Comput. 80(276), 1979–1995 (2011)
6. 6.
Brenner, S.C., Neilan, M.: Finite element approximations of the three dimensional Monge–Ampère equation. ESAIM Math. Modell. Numer. Anal. 46(5), 979–1001 (2012)
7. 7.
Caboussat, A., Glowinski, R., Gourzoulidis, D.: A least-squares/relaxation method for the numerical solution of the three-dimensional elliptic Monge–Ampère equation. J. Sci. Comput. 77(1), 53–78 (2018)
8. 8.
Caboussat, A., Glowinski, R., Sorensen, D.C.: A least-squares method for the numerical solution of the Dirichlet problem for the elliptic Monge–Ampère equation in dimension two. ESAIM Control Optim. Calc. Var. 19(3), 780–810 (2013)
9. 9.
Caffarelli, L.A.: Interior $${W}^{2, p}$$ estimates for solutions of the Monge–Ampère equation. Ann. Math. 131(1), 135–150 (1990)
10. 10.
Caffarelli, L.A., Cabré, X.: Fully Nonlinear Elliptic Equations, vol. 43. American Mathematical Society, Providence (1995)
11. 11.
Caffarelli, L.A., Milman, M.: Monge–Ampère equation: applications to geometry and optimization. In: NSF-CBMS Conference on the Monge–Ampère Equation, Applications to Geometry and Optimization, July 9–13, 1997, Florida Atlantic University, vol. 226. American Mathematical Soc. (1999)Google Scholar
12. 12.
Ciarlet, P.G.: Linear and Nonlinear Functional Analysis with Applications, vol. 130. SIAM, Philadelphia (2013)
13. 13.
De Philippis, G., Figalli, A.: Sobolev regularity for Monge–Ampère type equations. SIAM J. Math. Anal. 45(3), 1812–1824 (2013)
14. 14.
Feng, X., Glowinski, R., Neilan, M.: Recent developments in numerical methods for fully nonlinear second order partial differential equations. SIAM Rev. 55(2), 205–267 (2013)
15. 15.
Feng, X., Neilan, M.: Vanishing moment method and moment solutions for fully nonlinear second order partial differential equations. J. Sci. Comput. 38(1), 74–98 (2009)
16. 16.
Froese, B.D.: A numerical method for the elliptic Monge–Ampère equation with transport boundary conditions. SIAM J. Sci. Comput. 34(3), A1432–A1459 (2012)
17. 17.
Froese, B.D., Oberman, A.M.: Convergent finite difference solvers for viscosity solutions of the elliptic Monge–Ampère equation in dimensions two and higher. SIAM J. Numer. Anal. 49(4), 1692–1714 (2011)
18. 18.
Froese, B.D., Oberman, A.M.: Fast finite difference solvers for singular solutions of the elliptic Monge–Ampère equation. J. Comput. Phys. 230(3), 818–834 (2011)
19. 19.
Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (2015)
20. 20.
Glowinski, R.: Numerical Methods for Nonlinear Variational Problems. Springer, New York (1984). (2nd printing: 2008)
21. 21.
Glowinski, R.: Variational Methods for the Numerical Solution of Nonlinear Elliptic Problems. SIAM, Philadelphia (2015)
22. 22.
Glowinski, R., Liu, H., Leung, S., Qian, J.: A finite element/operator-splitting method for the numerical solution of the two dimensional elliptic Monge–Ampère equation. J. Sci. Comput. 79(1), 1–47 (2019)
23. 23.
Glowinski, R., Osher, S.J., Yin, W.: Splitting Methods in Communication, Imaging, Science, and Engineering. Springer, Berlin (2017)
24. 24.
Kazdan, J.L.: Prescribing the curvature of a Riemannian manifold. In: Conference Board of the Mathematical Sciences (1985)Google Scholar
25. 25.
Ming, W., Xu, J.: The Morley element for fourth order elliptic equations in any dimensions. Numer. Math. 103(1), 155–169 (2006)
26. 26.
Mirebeau, J.M.: Discretization of the 3D Monge–Ampère operator, between wide stencils and power diagrams. ESAIM Math. Modell. Numer. Anal. 49(5), 1511–1523 (2015)
27. 27.
Mohammadi, B.: Optimal transport, shape optimization and global minimization. C. R. Math. 344(9), 591–596 (2007)
28. 28.
Neilan, M.: A nonconforming Morley finite element method for the fully nonlinear Monge–Ampère equation. Numer. Math. 115(3), 371–394 (2010)
29. 29.
Oberman, A.M.: Wide stencil finite difference schemes for the elliptic Monge–Ampère equation and functions of the eigenvalues of the Hessian. Discrete Contin. Dyn. Syst. Ser. B 10(1), 221–238 (2008)
30. 30.
Sorensen, D.C., Glowinski, R.: A quadratically constrained minimization problem arising from PDE of Monge–Ampère type. Numer. Algorithms 53(1), 53–66 (2010)
31. 31.
Strang, G., Fix, G.J.: An Analysis of the Finite Element Method. Prentice-Hall, Englewood Cliffs (1973)

## Authors and Affiliations

• Hao Liu
• 1
• Roland Glowinski
• 2
• 3
• Shingyu Leung
• 4
• Jianliang Qian
• 5
1. 1.School of MathematicsGeorgia Institute of TechnologyAtlantaUSA
2. 2.Department of MathematicsUniversity of HoustonHoustonUSA
3. 3.Department of MathematicsThe Hong Kong Baptist UniversityKowloon TongPeople’s Republic of China
4. 4.Department of MathematicsThe Hong Kong University of Science and TechnologyKowloonPeople’s Republic of China
5. 5.Department of MathematicsMichigan State UniversityEast LansingUSA