Advertisement

High Order Anchoring and Reinitialization of Level Set Function for Simulating Interface Motion

  • Vimal RamanujEmail author
  • Ramanan Sankaran
Article
  • 20 Downloads

Abstract

A second order interface anchoring method has been developed and used with fast sweeping algorithm for reinitialization of a level set function. The algebraic anchoring formulation ensures that the location of the actual interface is preserved, leading to better mass conservation property. It also provides high order accurate algebraic constraint for solving the Eikonal equation on a finite difference grid. Geometric properties of the interface such as surface normal and curvature are subsequently computed from the reinitialized distance function. Various analytical functions for modeling distortion in level set field are considered and accuracy of reinitialization is evaluated using first and second order anchoring schemes. It is also shown that accurate computation of interface curvature requires a high order anchor in addition to a high order fast sweeping method. Mass conservation property of reinitialization is also analyzed by considering test problems from literature including the classic Rider–Kothe single vortex problem. The formulation is suitable for efficient parallelization for both distributed memory and on-node shared memory parallel systems. Scalability and performance of the reinitialization scheme on multiple architectures are demonstrated.

Keywords

Interface tracking Level set Fast sweeping method Reinitialization 

Mathematics Subject Classification

76M20 76T99 65Y05 

Notes

Acknowledgements

This research was supported by the High-Performance Computing for Manufacturing Project Program (HPC4Mfg), managed by the U.S. Department of Energy Advanced Manufacturing Office within the Energy Efficiency and Renewable Energy Office. It was performed using resources of the Oak Ridge Leadership Computing Facility and Oak Ridge National Laboratory, which are supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC0500OR22725.

References

  1. 1.
    Sussman, M., Ohta, M.: High-order techniques for calculating surface tension forces. In: Figueiredo, I.N., Rodrigues, J.F., Santos, L. (eds.) Free Boundary Problems, pp. 425–434. Birkhäuser Basel, Basel (2007)CrossRefGoogle Scholar
  2. 2.
    Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    du Chéné, A., Min, C., Gibou, F.: Second-order accurate computation of curvatures in a level set framework using novel high-order reinitialization schemes. J. Sci. Comput. 35(2–3), 114–131 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Tryggvason, G., Bunner, B., Esmaeeli, A., Juric, D., Al-Rawahi, N., Tauber, W., Han, J., Nas, S., Jan, Y.J.: A front-tracking method for the computations of multiphase flow. J. Comput. Phys. 169(2), 708–759 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Gibou, F., Fedkiw, R., Caflisch, R., Osher, S.: A level set approach for the numerical simulation of dendritic growth. J. Sci. Comput. 19(1–3), 183–199 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Shaikh, J., Sharma, A., Bhardwaj, R.: On sharp-interface level-set method for heat and/or mass transfer induced Stefan problem. Int. J. Heat Mass Transf. 96, 458–473 (2016)CrossRefGoogle Scholar
  7. 7.
    Udaykumar, H.S., Mittal, R., Shyy, W.: Computation of solid–liquid phase fronts in the sharp interface limit on fixed grids. J. Comput. Phys. 153(2), 535–574 (1999)zbMATHCrossRefGoogle Scholar
  8. 8.
    Jin, S., Wang, X., Starr, T.L., Chen, X.: Robust numerical simulation of porosity evolution in chemical vapor infiltration I: two space dimension. J. Comput. Phys. 162(2), 467–482 (2000)zbMATHCrossRefGoogle Scholar
  9. 9.
    Jin, S., Wang, X.: Robust numerical simulation of porosity evolution in chemical vapor infiltration III: three space dimension. J. Comput. Phys. 186(2), 582–595 (2003)zbMATHCrossRefGoogle Scholar
  10. 10.
    Gibou, F., Fedkiw, R., Osher, S.: A review of level-set methods and some recent applications. J. Comput. Phys. 353, 82–109 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Desjardins, O., Moureau, V., Pitsch, H.: An accurate conservative level set/ghost fluid method for simulating turbulent atomization. J. Comput. Phys. 227(18), 8395–8416 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Mittal, R., Dong, H., Bozkurttas, M., Najjar, F.M., Vargas, A., von Loebbecke, A.: A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries. J. Comput. Phys. 227(10), 4825–4852 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Bo, W., Liu, X., Glimm, J., Li, X.: A robust front tracking method: verification and application to simulation of the primary breakup of a liquid jet. SIAM J. Sci. Comput. 33(4), 1505–1524 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Hirt, C.W., Nichols, B.D.: Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39(1), 201–225 (1981)zbMATHCrossRefGoogle Scholar
  15. 15.
    Youngs, D.: Time-dependent multi-material flow with large fluid distortion. In: Numerical Methods for Fluid Dynamics, vol. 24, pp. 273–285. Academic Press, Cambridge (1982)Google Scholar
  16. 16.
    Benson, D.J.: Volume of fluid interface reconstruction methods for multi-material problems. Appl. Mech. Rev. 55(2), 151–165 (2002)CrossRefGoogle Scholar
  17. 17.
    Sethian, J.A.: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge University Press. Google-Books-ID: ErpOoynE4dIC (1999)Google Scholar
  18. 18.
    Sussman, M., Smereka, P., Osher, S.: A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Phys. 114(1), 146–159 (1994)zbMATHCrossRefGoogle Scholar
  19. 19.
    Coquerelle, M., Glockner, S.: A fourth-order accurate curvature computation in a level set framework for two-phase flows subjected to surface tension forces. J. Comput. Phys. 305, 838–876 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Trujillo, M.F., Anumolu, L., Ryddner, D.: The distortion of the level set gradient under advection. J. Comput. Phys. 334, 81–101 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Sethian, J.A.: A fast marching level set method for monotonically advancing fronts. Proc. Nat. Acad. Sci. 93(4), 1591–1595 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Jiang, G., Peng, D.: Weighted ENO schemes for Hamilton–Jacobi equations. SIAM J. Sci. Comput. 21(6), 2126–2143 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Chopp, D.: Some improvements of the fast marching method. SIAM J. Sci. Comput. 23(1), 230–244 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    McCaslin, J.O., Desjardins, O.: A localized re-initialization equation for the conservative level set method. J. Comput. Phys. 262, 408–426 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Nourgaliev, R., Kadioglu, S., Mousseau, V.: Marker redistancing/level set method for high-fidelity implicit interface tracking. SIAM J. Sci. Comput. 32(1), 320–348 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Zhao, H.: A fast sweeping method for Eikonal equations. Math. Comput. 74(250), 603–627 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Zhao, H.: Parallel implementations of the fast sweeping method. J. Comput. Math. 25(4), 421–429 (2007) MathSciNetGoogle Scholar
  28. 28.
    Qian, J., Yong-Tao, Z., Zhao, H.: A fast sweeping method for static convex Hamilton–Jacobi equations. J. Sci. Comput. 31, 237–271 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Zhang, Y.-T., Zhao, H.-K., Qian, J.: High order fast sweeping methods for static Hamilton–Jacobi equations. J. Sci. Comput. 29(1), 25–56 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Zhang, Y.-T., Shu, C.-W.: Chapter 5–ENO and WENO schemes. In: Abgrall, R., Shu, C.-W. (eds.) Handbook of Numerical Methods for Hyperbolic Problems, of Handbook of Numerical Analysis, vol. 17, pp. 103–122. Elsevier, Amsterdam (2016)Google Scholar
  31. 31.
    Nave, J.-C., Rosales, R.R., Seibold, B.: A gradient-augmented level set method with an optimally local, coherent advection scheme. J. Comput. Phys. 229(10), 3802–3827 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Bajaj, C.L., Xu, G., Zhang, Q.: Smooth surface constructions via a higher-order level-set method. In: 2007 10th IEEE international conference on computer-aided design and computer graphics, pp. 27–27 (2007)Google Scholar
  33. 33.
    Edwards, H.C., Trott, C.R., Sunderland, D.: Kokkos: enabling manycore performance portability through polymorphic memory access patterns. J. Parallel Distrib. Comput. 74(12), 3202–3216 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Oak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations