An Accurate Approximation of Exponential Integrators for the Schrödinger Equation

  • A. Y. MeltzerEmail author


Numerical time propagation of semi-linear equations of the Schrödinger type can be performed by the use of exponential integrators. The main difficulty for efficient implementation of this type of schemes lies in the evaluation of \(\varphi \)-functions of a matrix argument. We develop a Chebyshev series approximation for these functions and propose a simple algorithm for the evaluation of the series coefficients. The domain of convergence of the series is consistent with the spectrum of Schrödinger type operators. This approximation is shown to be accurate and performs favorably in comparison to other state of the art methods for approximation of \(\varphi \)-functions.


Chebyshev expansion Schrödinger equation Exponential integrators Explicit scheme Bessel series 



The author wishes to thank Adi Ditkowski for valuable discussions of the method presented in this paper.


  1. 1.
    Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1972)zbMATHGoogle Scholar
  2. 2.
    Bao, W., Jaksch, D.: An explicit unconditionally stable numerical method for solving damped nonlinear Schrödinger equations with a focusing nonlinearity. SIAM J. Numer. Anal. 41, 1406–1426 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Besse, C.: A relaxation scheme for the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 42, 934–952 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Besse, C., Bidégaray, B., Descombes, S.: Order estimates in time of splitting methods for the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 40, 26–40 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Besse, C., Dujardin, G., Lacroix-Violet, I.: High order exponential integrators for nonlinear Schrödinger equations with application to rotating Bose–Einstein condensates. SIAM J. Numer. Anal. 55, 1387–1411 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Beylkin, G., Keiser, J.M., Vozovoi, L.: A new class of time discretization schemes for the solution of nonlinear PDEs. J. Comput. Phys. 147, 362–387 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Caliari, M.: Accurate evaluation of divided differences for polynomial interpolation of exponential propagators. Computing 80, 189–201 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Caliari, M., Ostermann, A.: Implementation of exponential Rosenbrock-type integrators. Appl. Numer. Math. 59, 568–581 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Calvo, M.P., Palencia, C.: A class of explicit multistep exponential integrators for semilinear problems. Numer. Math. 102, 367–381 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Calvo, M.P., Portillo, A.M.: Variable step implementation of ETD methods for semilinear problems. Appl. Math. Comput. 196, 627–637 (2008)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Cohen, D., Gauckler, L.: One-stage exponential integrators for nonlinear Schrödinger equations over long times. BIT 52, 877–903 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Chan, T.F., Lee, D., Shen, L.: Stable explicit schemes for equations of the Schrödinger type. SIAM J. Numer. Anal. 23, 274–281 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Celledoni, E., Cohen, D., Owren, B.: Symmetric exponential integrators with an application to the cubic Schrödinger equation. Found. Comput. Math. 8, 303–317 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Cox, S.M., Matthews, P.C.: Exponential time differencing for stiff systems. J. Comput. Phys. 176, 430–455 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Cryer, C.W.: The difference analogue of Gauss’ theorem. SIAM J. Numer. Anal. 4, 155–162 (1967)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Fei, Z., Pérez-García, V.M., Vázquez, L.: Numerical simulation of nonlinear Schrödinger systems: a new conservative scheme. Appl. Math. Comput. 71, 165–177 (1995)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Göckler, T., Grimm, V.: Uniform approximation of \(\varphi \)-functions in exponential integrators by a rational Krylov subspace method with simple poles. SIAM J. Matrix Anal. Appl. 35, 1467–1489 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Higham, N.J.: Accuracy and Stability of Numerical Algorithms. SIAM, Philadelphia (1996)zbMATHGoogle Scholar
  19. 19.
    Hochbruck, M., Lubich, Ch., Selhofer, H.: Exponential integrators for large systems of differential equations. SIAM J. Sci. Comput. 19, 1552–1574 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Hochbruck, M., Ostermann, A., Schweitzer, J.: Exponential Rosenbrock-type methods. SIAM J. Numer. Anal. 47, 786–803 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Hochbruck, M., Ostermann, A.: Exponential integrators. Acta Numer. 19, 209–286 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Kassam, A.-K., Trefethen, L.N.: Fourth-order time-stepping for stiff PDEs. SIAM J. Sci. Comput. 26, 1214–1233 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Krogstad, S.: Generalized integrating factor methods for stiff PDEs. J. Comput. Phys. 203, 7288 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Luke, Y.L.: Integrals of Bessel Functions. McGraw-Hill, New York (1962)zbMATHGoogle Scholar
  25. 25.
    Maia, L.A., Montefusco, E., Pellacci, B.: Positive solutions for a weakly coupled nonlinear Schrödinger system. J. Differ. Equ. 229, 743–767 (2006)zbMATHCrossRefGoogle Scholar
  26. 26.
    Meinardus, G.: Approximation of Functions: Theory and Numerical Methods. Springer, New York (1967)zbMATHCrossRefGoogle Scholar
  27. 27.
    Minchev, B., Wright, W.M.: A review of exponential integrators for semilinear problems, Technical Report 2/05. Department of Mathematical Sciences, NTNU, Norway (2005)Google Scholar
  28. 28.
    Niesen, J., Wright, W.M.: Algorithm 919: a Krylov subspace algorithm for evaluating the \(\varphi \)-functions appearing in exponential integrators. ACM Trans. Math. Softw. 38, 22:1–22:19 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Reichel, L.: Newton interpolation at Leja points. BIT 30, 332–346 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Schaefer, I., Tal-Ezer, H., Kosloff, R.: Semi-global approach for propagation of the time-dependent Schrödinger equation for time-dependent and nonlinear problems. J. Comput. Phys. 343, 368–413 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Schmelzer, T., Trefethen, L.N.: Evaluating matrix functions for exponential integrators via Caratheodory–Fejer approximation and contour integrals. Electron. Trans. Numer. Anal. 29, 1–18 (2007)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Skaflestad, B., Wright, W.M.: The scaling and modified squaring method for matrix functions related to the exponential. Appl. Numer. Math. 59, 783–799 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Suhov, A.Y.: A spectral method for the time evolution in parabolic problems. J. Sci. Comput. 29, 201–217 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Suhov, A.Y.: An accurate polynomial approximation of exponential integrators. J. Sci. Comput. 60, 684–698 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Tal-Ezer, H.: On restart and error estimation for Krylov approximation of \(w = f(A)v\). SIAM J. Sci. Comput. 29, 2426–2441 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Tal-Ezer, H., Kosloff, R.: An accurate and efficient scheme for propagating the time dependent Schrödinger equation. J. Chem. Phys. 81, 3967–3971 (1984)CrossRefGoogle Scholar
  37. 37.
    Toh, K.-C., Trefethen, L.N.: The Kreiss matrix theorem on a general complex domain. SIAM J. Matrix Anal. Appl. 21, 145–165 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Tokman, M.: Efficient integration of large stiff systems of ODEs with exponential propagation iterative (EPI) methods. J. Comput. Phys. 213(2), 748–776 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Tokman, M., Loffeld, J., Tranquilli, P.: New adaptive exponential propagation iterative methods of Runge–Kutta type. SIAM J. Sci. Comput. 34, A2650–A2669 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Rainwater, G., Tokman, M.: A new class of split exponential propagation iterative methods of Runge–Kutta type (sEPIRK) for semilinear systems of ODEs. J. Comput. Phys. 269, 40–60 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Trefethen, L.N.: Spectral Methods in Matlab. SIAM, Philadelphia (2000)zbMATHCrossRefGoogle Scholar
  42. 42.
    Trefethen, L.N.: Is Gauss quadrature better than Clenshaw–Curtis? SIAM Rev. 50(1), 67–87 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Wu, L.: Dufort-Frankel-type methods for linear and nonlinear Schrödinger. SIAM J. Numer. Anal. 33, 1526–1533 (1996)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Condensed Matter PhysicsWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations