Journal of Scientific Computing

, Volume 81, Issue 3, pp 1712–1731 | Cite as

Multiscale Hybridizable Discontinuous Galerkin Method for Flow Simulations in Highly Heterogeneous Media

  • Yanfang Yang
  • Ke Shi
  • Shubin FuEmail author


We propose a multiscale hybridizable discontinuous Galerkin method for Darcy flow and two phase flow simulations in highly heterogeneous media. The multiscale space consists of offline and online multiscale basis functions. The offline basis functions are constructed by solving appropriate local spectral problem, and thus contain important local media information. The online basis functions are computed iteratively with the residuals of previous multiscale solution on selected local regions. Typically, the offline basis provides initial multiscale solution for constructing online basis. For the two phase flow simulations, we only compute the basis space for the initial permeability field and keep it fixed as time advancing. Numerical experiments show the multiscale solution can approximate the fine scale solution accurately for both types of flow simulations.


Multiscale finite element method Hybridizable discontinuous Galerkin Two-phase flow simulation Heterogeneous media 



Yanfang Yang’s work is supported by the National Natural Science Foundation of China (Grant No. 11901129).


  1. 1.
    Aarnes, J.E., Kippe, V., Lie, K.A.: Mixed multiscale finite elements and streamline methods for reservoir simulation of large geomodels. Adv. Water Resour. 28, 257–271 (2005)CrossRefGoogle Scholar
  2. 2.
    Araya, R., Harder, C., Paredes, D., Valentin, F.: Multiscale hybrid-mixed method. SIAM J. Numer. Anal. 51(6), 3505–3531 (2013)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Arbogast, T., Pencheva, G., Wheeler, M.F., Yotov, I.: A multiscale mortar mixed finite element method. Multiscale Model. Simul. 6(1), 319–346 (2007). (electronic)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Chan, H.Y., Chung, E.T., Efendiev, Y.: Adaptive mixed GMsFEM for flows in heterogeneous media. Numer. Math. Theory Methods Appl. 9(4), 497–527 (2016)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Chen, Z., Hou, T.Y.: A mixed multiscale finite element method for elliptic problems with oscillating coefficients. Math. Comput. 72, 541–576 (2002)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Chung, E.T., Efendiev, Y., Lee, C.S.: Mixed generalized multiscale finite element methods and applications. Multiscale Model. Simul. 13(1), 338–366 (2015)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Chung, E.T., Efendiev, Y., Leung, W.T.: Residual-driven online generalized multiscale finite element methods. J. Comput. Phys. 302, 176–190 (2015)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Chung, E.T., Efendiev, Y., Leung, W.T.: An online generalized multiscale discontinuous galerkin method (gmsdgm) for flows in heterogeneous media. Commun. Comput. Phys. 21(2), 401–422 (2017)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Cockburn, B., Qiu, W., Shi, K.: Conditions for superconvergence of HDG methods for second-order elliptic problems. Math. Comput. 81(279), 1327–1353 (2012)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47(2), 1319–1365 (2009)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Durfolsky, L. J.: Numerical calculation of equivalent grid block permeability tensors of heterogeneous porous media: Water Resour. Res. vol. 27, no. 5, May 1991, pp. 299–708. In: International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, vol. 28, p. A350. Pergamon (1991)Google Scholar
  12. 12.
    Efendiev, Y., Galvis, J., Wu, X.H.: Multiscale finite element methods for high-contrast problems using local spectral basis functions. J. Comput. Phys. 230, 937–955 (2011)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Efendiev, Y., Gildin, E., Yang, Y.: Online adaptive local-global model reduction for flows in heterogeneous porous media. Computation 4(2), 22 (2016). CrossRefGoogle Scholar
  14. 14.
    Efendiev, Y., Ginting, V., Hou, T., Ewing, R.: Accurate multiscale finite element methods for two-phase flow simulations. J. Comput. Phys. 220(1), 155–174 (2006)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Efendiev, Y., Hou, T.Y.: Multiscale Finite Element Methods: Theory and Applications, vol. 4. Springer, Berlin (2009)zbMATHGoogle Scholar
  16. 16.
    Efendiev, Y., Lazarov, R., Moon, M., Shi, K.: A spectral multiscale hybridizable discontinuous Galerkin method for second order elliptic problems. Computer Methods Appl. Mech. Eng. 292, 243–256 (2015)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Fabien, M.S., Knepley, M.G., Riviere, B.M.: A hybridizable discontinuous galerkin method for two-phase flow in heterogeneous porous media (2018). arXiv preprint arXiv:1802.06013
  18. 18.
    Gao, K., Chung, E.T., Gibson Jr., R.L., Fu, S., Efendiev, Y.: A numerical homogenization method for heterogeneous, anisotropic elastic media based on multiscale theory. Geophysics 80(4), D385–D401 (2015)CrossRefGoogle Scholar
  19. 19.
    Ghasemi, M., Yang, Y., Gildin, E., Efendiev, Y., Calo, V.: Fast multi-scale reservoir simulations using pod-deim model reduction. SPE J. 21(6), 2141–2154 (2016)CrossRefGoogle Scholar
  20. 20.
    Harder, C., Paredes, D., Valentin, F.: A family of multiscale hybrid-mixed finite element methods for the darcy equation with rough coefficients. J. Comput. Phys. 245, 107–130 (2013)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Hou, T., Wu, X.H.: A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134, 169–189 (1997)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Jenny, P., Lee, S.H., Tchelepi, H.: Multi-scale finite volume method for elliptic problems in subsurface flow simulation. J. Comput. Phys. 187, 47–67 (2003)CrossRefGoogle Scholar
  23. 23.
    Nguyen, N.C., Peraire, J., Cockburn, B.: A hybridizable discontinuous galerkin method for stokes flow. Computer Methods Appl. Mech. Eng. 199(9–12), 582–597 (2010)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Nguyen, N.C., Peraire, J., Cockburn, B.: An implicit high-order hybridizable discontinuous galerkin method for linear convection–diffusion equations. J. Comput. Phys. 228(9), 3232–3254 (2009)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Nguyen, N.C., Peraire, J., Cockburn, B.: High-order implicit hybridizable discontinuous galerkin methods for acoustics and elastodynamics. J. Comput. Phys. 230(10), 3695–3718 (2011)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Wheeler, M.F., Xue, G., Yotov, I.: A multiscale mortar multipoint flux mixed finite element method. ESAIM Math. Model. Numer. Anal. 46(4), 759–796 (2012)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Wu, X.-H., Efendiev, Y., Hou, T.Y.: Analysis of upscaling absolute permeability. Discrete Contin. Dyn. Syst. Ser. B 2(2), 185–204 (2002)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Xiao, H: Multiscale mortar mixed finite element methods for flow problems in highly heterogeneous porous media. PhD thesis (2013)Google Scholar
  29. 29.
    Yang, Y., Chung, E.T., Fu, S.: An enriched multiscale mortar space for high contrast flow problems. Commun. Comput. Phys. 23(2), 476–499 (2018)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Mathematics and Information ScienceGuangzhou UniversityGuangzhouPeople’s Republic of China
  2. 2.Department of MathematicsOld Dominion UniversityNorfolkUSA
  3. 3.Department of MathematicsThe Chinese University of Hong KongSha TinHong Kong SAR

Personalised recommendations