Advertisement

Journal of Scientific Computing

, Volume 81, Issue 3, pp 1630–1654 | Cite as

Diffusion Across Semi-permeable Barriers: Spectral Properties, Efficient Computation, and Applications

  • Nicolas MoutalEmail author
  • Denis Grebenkov
Article
  • 25 Downloads

Abstract

We present an efficient method to compute the eigenvalues and eigenmodes of the diffusion operator \(\nabla (D\nabla )\) on one-dimensional heterogeneous structures with multiple semi-permeable barriers. This method allows us to calculate the diffusion propagator and related quantities such as diffusion MRI signal or first exit time distribution analytically for regular geometries and numerically for arbitrary ones. The effect of the barriers and the transition from infinite permeability (no barriers) to zero permeability (impermeable barriers) are investigated.

Keywords

Diffusion Semi-permeable barriers Laplacian spectrum Multilayer Composite medium Diffusion MRI First-passage phenomena 

Notes

Acknowledgements

We acknowledge the support under Grant No. ANR-13-JSV5-0006-01 of the French National Research Agency.

Supplementary material

10915_2019_1055_MOESM1_ESM.pdf (709 kb)
Supplementary material 1 (pdf 708 KB)

References

  1. 1.
    Carslaw, H.S., Jaeger, J.C.: Conduction of Heat in Solids. Clarendon Press, Oxford (1959)zbMATHGoogle Scholar
  2. 2.
    Crank, J.: The Mathematics of Diffusion. Clarendon Press, Oxford (1975)zbMATHGoogle Scholar
  3. 3.
    Grebenkov, D.S., Nguyen, B.-T.: Geometrical structure of Laplacian eigenfunctions. SIAM Rev. 55, 601–667 (2013)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Lejay, A., Pichot, G.: Simulating diffusion processes in discontinuous media: a numerical scheme with constant time steps. J. Comput. Phys. 231, 7299–7314 (2012)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Lejay, A.: Estimation of the mean residence time in cells surrounded by semi-permeable membranes by a Monte Carlo method, Research Report RR-8709, Inria Nancy - Grand Est (Villers-lès-Nancy, France); INRIA (2015). https://hal.inria.fr/hal-01140960
  6. 6.
    Hickson, R., Barry, S., Mercer, G., Sidhu, H.: Finite difference schemes for multilayer diffusion. Math. Comput. Modell. 54, 210–220 (2011)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Diard, J.-P., Glandut, N., Montella, C., Sanchez, J.-Y.: One layer, two layers, etc. An introduction to the EIS study of multilayer electrodes. Part 1: Theory. J. Electroanal. Chem. 578, 247–257 (2005)Google Scholar
  8. 8.
    Freger, V.: Diffusion impedance and equivalent circuit of a multilayer film. Electrochem. Commun. 7, 957–961 (2005)Google Scholar
  9. 9.
    Ngameni, R., Millet, P.: Derivation of the diffusion impedance of multi-layer cylinders. Application to the electrochemical permeation of hydrogen through Pd and PdAg hollow cylinders. Electrochimica Acta 131, 52–59 (2014)Google Scholar
  10. 10.
    Graff, G.L., Williford, R.E., Burrows, P.E.: Mechanisms of vapor permeation through multilayer barrier films: lag time versus equilibrium permeation. J. Appl. Phys. 96, 1840–1849 (2004)Google Scholar
  11. 11.
    Gurevich, Y., Lashkevich, I., de la Cruz, G.G.: Effective thermal parameters of layered films: an application to pulsed photothermal techniques. Int. J. Heat Mass Transf. 52, 4302–4307 (2009)zbMATHGoogle Scholar
  12. 12.
    Muñoz Aguirre, N., González de la Cruz, G., Gurevich, Y., Logvinov, G., Kasyanchuk, M.: Heat diffusion in two-layer structures: photoacoustic experiments. Physica Status Solidi (b) 220, 781–787 (2000)Google Scholar
  13. 13.
    Grossel, P., Depasse, F.: Alternating heat diffusion in thermophysical depth profiles: multilayer and continuous descriptions. J. Phys. D: Appl. Phys. 31, 216 (1998)Google Scholar
  14. 14.
    Lu, X., Tervola, P.: Transient heat conduction in the composite slab-analytical method. J. Phys. A: Math. Gen. 38, 81 (2005)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Lu, X., Tervola, P., Viljanen, M.: Transient analytical solution to heat conduction in composite circular cylinder. Int. J. Heat Mass Transf. 49, 341–348 (2006)zbMATHGoogle Scholar
  16. 16.
    de Monte, F.: Transient heat conduction in one-dimensional composite slab. A ‘natural’ analytic approach. Int. J. Heat Mass Transf. 43, 3607–3619 (2000)zbMATHGoogle Scholar
  17. 17.
    Barbaro, S., Giaconia, C., Orioli, A.: A computer oriented method for the analysis of non steady state thermal behaviour of buildings. Build. Environ. 23, 19–24 (1988)Google Scholar
  18. 18.
    Yuen, W.: Transient temperature distribution in a multilayer medium subject to radiative surface cooling. Appl. Math. Model. 18, 93–100 (1994)zbMATHGoogle Scholar
  19. 19.
    Hickson, R., Barry, S., Mercer, G.: Critical times in multilayer diffusion. Part 1: Exact solutions. Int. J. Heat Mass Transf. 52, 5776–5783 (2009a)zbMATHGoogle Scholar
  20. 20.
    Hickson, R., Barry, S., Mercer, G.: Critical times in multilayer diffusion. Part 2: Approximate solutions. Int. J. Heat Mass Transf. 52, 5784–5791 (2009b)zbMATHGoogle Scholar
  21. 21.
    Shackelford, C.D.: Laboratory diffusion testing for waste disposal—A review. J. Contam. Hydrol. 7, 177–217 (1991)Google Scholar
  22. 22.
    Liu, G., Barbour, L., Si, B.C.: Unified multilayer diffusion model and application to diffusion experiment in porous media by method of chambers. Environ. Sci. Technol. 43, 2412–2416 (2009)Google Scholar
  23. 23.
    Shackelford, C.D., Moore, S.M.: Fickian diffusion of radionuclides for engineered containment barriers: diffusion coefficients, porosities, and complicating issues. Eng. Geol. 152, 133–147 (2013)Google Scholar
  24. 24.
    Yates, S.R., Papiernik, S.K., Gao, F., Gan, J.: Analytical solutions for the transport of volatile organic chemicals in unsaturated layered systems. Water Resour. Res. 36, 1993–2000 (2000)Google Scholar
  25. 25.
    Siegel, R.A.: A Laplace transform technique for calculating diffusion time lags. J. Membr. Sci. 26, 251–262 (1986)Google Scholar
  26. 26.
    Pontrelli, G., de Monte, F.: Mass diffusion through two-layer porous media: an application to the drug-eluting stent. Int. J. Heat Mass Transf. 50, 3658–3669 (2007)zbMATHGoogle Scholar
  27. 27.
    Todo, H., Oshizaka, T., Kadhum, W.R., Sugibayashi, K.: Mathematical model to predict skin concentration after topical application of drugs. Pharmaceutics 5, 634–651 (2013)Google Scholar
  28. 28.
    Mantzavinos, D., Papadomanolaki, M., Saridakis, Y., Sifalakis, A.: Fokas transform method for a brain tumor invasion model with heterogeneous diffusion in 1+1 dimensions. Appl. Numer. Math. 104, 47–61 (2016). Fifth International Conference on Numerical Analysis—Recent Approaches to Numerical Analysis: Theory, Methods and Applications (NumAn 2012), held in Ioannina Sixth International Conference on Numerical Analysis – Recent Approaches to Numerical Analysis: Theory, Methods and Applications (NumAn 2014), held in Chania, in memory of Theodore S. PapatheodorouGoogle Scholar
  29. 29.
    Canosa, J., Oliveira, R.G.D.: A new method for the solution of the Schrödinger equation. J. Comput. Phys. 5, 188–207 (1970)zbMATHGoogle Scholar
  30. 30.
    Pruess, S.: Estimating the eigenvalues of Sturm–Liouville problems by approximating the differential equation. SIAM J. Numer. Anal. 10, 55–68 (1973)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Pruess, S.: High order approximations to Sturm–Liouville eigenvalues. Numer. Math. 24, 241–247 (1975)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Marletta, M., Pryce, J.D.: Automatic solution of Sturm–Liouville problems using the pruess method. J. Comput. Appl. Math. 39, 57–78 (1992)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Pruess, S., Fulton, C.T.: Mathematical software for Sturm–Liouville problems. ACM Trans. Math. Softw. 19, 360–376 (1993)zbMATHGoogle Scholar
  34. 34.
    Hahn, D.W., Ozisik, M.N.: One-Dimensional Composite Medium, pp. 393–432. Wiley, Hoboken (2012).  https://doi.org/10.1002/9781118411285.ch10 CrossRefGoogle Scholar
  35. 35.
    Mikhailov, M., Ozisik, M.N.: Unified Analysis and Solutions of Heat and Mass Diffusion. Wiley, Hoboken (1984)Google Scholar
  36. 36.
    Gaveau, B., Okada, M., Okada, T.: Second order differential operators and Dirichlet integrals with singular coefficients. Tohoku Math. J. 39, 465–504 (1987)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Carr, E., Turner, I.: A semi-analytical solution for multilayer diffusion in a composite medium consisting of a large number of layers. Appl. Math. Model. 40, 7034–7050 (2016)MathSciNetGoogle Scholar
  38. 38.
    Grebenkov, D.S.: Pulsed-gradient spin-echo monitoring of restricted diffusion in multilayered structures. J. Magn. Reson. 205, 181–195 (2010)Google Scholar
  39. 39.
    Sokolov, I.M.: Ito, Stratonovich, Hänggi and all the rest: the thermodynamics of interpretation. Chem. Phys. 375, 359–363 (2010). Stochastic processes in Physics and Chemistry (in honor of Peter Hänggi)Google Scholar
  40. 40.
    de Haan, H.W., Chubynsky, M.V., Slater, G.W.: Monte-Carlo approaches for simulating a particle at a diffusivity interface and the “Ito-Stratonovich dilemma”, ArXiv e-prints (2012)Google Scholar
  41. 41.
    Hänggi, P.: Stochastic processe I: asymptotic behaviour and symmetries. Helv. Phys. Acta 51, 183–201 (1978)MathSciNetGoogle Scholar
  42. 42.
    Hänggi, P.: Connection between deterministic and stochastic descriptions of nonlinear systems. Helv. Phys. Acta 53, 491–496 (1980)MathSciNetGoogle Scholar
  43. 43.
    Hänggi, P., Thomas, H.: Stochastic processes: time evolution, symmetries and linear response. Phys. Rep. 88, 207–319 (1982)MathSciNetGoogle Scholar
  44. 44.
    Klimontovich, Y.L.: Ito, Stratonovich and kinetic forms of stochastic equations. Physica A 163, 515–532 (1990)MathSciNetGoogle Scholar
  45. 45.
    Klimontovich, Y.L.: Nonlinear Brownian motion. Phys. Usp. 37, 737 (1994)Google Scholar
  46. 46.
    Hickson, R., Barry, S., Sidhu, H., Mercer, G.: Critical times in single-layer reaction diffusion. Int. J. Heat Mass Transf. 54, 2642–2650 (2011a)zbMATHGoogle Scholar
  47. 47.
    Hickson, R.I., Barry, S.I., Sidhu, H.S., Mercer, G.N.: A comparison of critical time definitions in multilayer diffusion. ANZIAM J. 52, 333–358 (2011b)MathSciNetzbMATHGoogle Scholar
  48. 48.
    Miller, J., Weaver, P.: Temperature profiles in composite plates subject to time-dependent complex boundary conditions. Compos. Struct. 59, 267–278 (2003)Google Scholar
  49. 49.
    Fukuda, M., Kawai, H.: Diffusion of low molecular weight substances into a fiber with skin-core structure-rigorous solution of the diffusion in a coaxial cylinder of multiple components. Polym. Eng. Sci. 34, 330–340 (1994)Google Scholar
  50. 50.
    Fukuda, M., Kawai, H.: Diffusion of low molecular weight substances into a laminar film. I: Rigorous solution of the diffusion equation in a composite film of multiple layers. Polym. Eng. Sci. 35, 709–721 (1995)Google Scholar
  51. 51.
    Grebenkov, D.S., Rupprecht, J.-F.: The escape problem for mortal walkers. J. Chem. Phys. 146, 084106 (2017)Google Scholar
  52. 52.
    Meerson, B., Redner, S.: Mortality, redundancy, and diversity in stochastic search. Phys. Rev. Lett. 114, 198101 (2015)Google Scholar
  53. 53.
    Yuste, S.B., Abad, E., Lindenberg, K.: Exploration and trapping of mortal random walkers. Phys. Rev. Lett. 110, 220603 (2013)Google Scholar
  54. 54.
    Biess, A., Korkotian, E., Holcman, D.: Barriers to diffusion in dendrites and estimation of calcium spread following synaptic inputs. PLoS Comput. Biol. 7, 1–14 (2011)MathSciNetGoogle Scholar
  55. 55.
    Carranza, S., Paul, D., Bonnecaze, R.: Design formulae for reactive barrier membranes. Chem. Eng. Sci. 65, 1151–1158 (2010)Google Scholar
  56. 56.
    Gray, B., Dewynne, J., Hood, M., Wake, G., Weber, R.: Effect of deposition of combustible matter onto electric power cables. Fire Saf. J. 16, 459–467 (1990)Google Scholar
  57. 57.
    Okubo, A., Levin, S.A.: Diffusion and Ecological Problems: Modern Perspectives. Springer, New York (2001)zbMATHGoogle Scholar
  58. 58.
    Mann, A.B., Gavens, A.J., Reiss, M.E., Heerden, D.V., Bao, G., Weihs, T.P.: Modeling and characterizing the propagation velocity of exothermic reactions in multilayer foils. J. Appl. Phys. 82, 1178–1188 (1997)Google Scholar
  59. 59.
    Gachon, J.-C., Rogachev, A., Grigoryan, H., Illarionova, E., Kuntz, J.-J., Kovalev, D., Nosyrev, A., Sachkova, N., Tsygankov, P.: On the mechanism of heterogeneous reaction and phase formation in Ti/Al multilayer nanofilms. Acta Mater. 53, 1225–1231 (2005)Google Scholar
  60. 60.
    Callaghan, P.T.: Principles of Nuclear Magnetic Resonance Microscopy, 1st edn. Clarendon Press, Oxford (1991)Google Scholar
  61. 61.
    Price, W.: NMR Studies of Translational Motion: Principles and Applications. Cambridge Molecular Science, Cambridge (2009)Google Scholar
  62. 62.
    Grebenkov, D.S.: NMR survey of reflected Brownian motion. Rev. Mod. Phys. 79, 1077–1137 (2007)Google Scholar
  63. 63.
    Kiselev, V.G.: Fundamentals of diffusion MRI physics. NMR Biomed. 30, e3602 (2017)Google Scholar
  64. 64.
    Tanner, J.E., Stejskal, E.O.: Restricted self-diffusion of protons in colloidal systems by the pulsed-gradient, spin-echo method. J. Chem. Phys. 49, 1768–1777 (1968)Google Scholar
  65. 65.
    Callaghan, P.T., Coy, A., Halpin, T.P.J., MacGowan, D., Packer, K.J., Zelaya, F.O.: Diffusion in porous systems and the influence of pore morphology in pulsed gradient spin-echo nuclear magnetic resonance studies. J. Chem. Phys. 97, 651–662 (1992)Google Scholar
  66. 66.
    Coy, A., Callaghan, P.T.: Pulsed gradient spin echo nuclear magnetic resonance for molecules diffusing between partially reflecting rectangular barriers. J. Chem. Phys. 101, 4599–4609 (1994)Google Scholar
  67. 67.
    Callaghan, P.: Pulsed-gradient spin-echo NMR for planar, cylindrical, and spherical pores under conditions of wall relaxation. J. Magn. Reson. Ser. A 113, 53–59 (1995)Google Scholar
  68. 68.
    Tanner, J.E.: Transient diffusion in a system partitioned by permeable barriers. Application to NMR measurements with a pulsed field gradient. J. Chem. Phys. 69, 1748–1754 (1978)Google Scholar
  69. 69.
    Kuchel, P.W., Durrant, C.J.: Permeability coefficients from NMR q-space data: models with unevenly spaced semi-permeable parallel membranes. J. Magn. Reson. 139, 258–272 (1999)Google Scholar
  70. 70.
    Powles, J.G., Mallett, M.J.D., Rickayzen, G., Evans, W.A.B.: Exact analytic solutions for diffusion impeded by an infinite array of partially permeable barriers. Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 436, 391–403 (1992)MathSciNetzbMATHGoogle Scholar
  71. 71.
    Novikov, E.G., van Dusschoten, D., As, H.V.: Modeling of self-diffusion and relaxation time NMR in multi-compartment systems. J. Magn. Reson. 135, 522–528 (1998)Google Scholar
  72. 72.
    Sukstanskii, A., Yablonskiy, D., Ackerman, J.: Effects of permeable boundaries on the diffusion-attenuated MR signal: insights from a one-dimensional model. J. Magn. Reson. 170, 56–66 (2004)Google Scholar
  73. 73.
    Grebenkov, D.S., Nguyen, D.V., Li, J.-R.: Exploring diffusion across permeable barriers at high gradients. I. Narrow pulse approximation. J. Magn. Reson. 248, 153–163 (2014)Google Scholar
  74. 74.
    Grebenkov, D.S.: Exploring diffusion across permeable barriers at high gradients. II. Localization regime. J. Magn. Reson. 248, 164–176 (2014)Google Scholar
  75. 75.
    Novikov, D.S., Fieremans, E., Jensen, J.H., Helpern, J.A.: Random walks with barriers. Nat. Phys. 7, 508–514 (2011)Google Scholar
  76. 76.
    Novikov, D.S., Jensen, J.H., Helpern, J.A., Fieremans, E.: Revealing mesoscopic structural universality with diffusion. Proc. Nat. Acad. Sci. 111, 5088–5093 (2014)Google Scholar
  77. 77.
    Redner, S.: A Guide to First-Passage Processes. Cambridge University Press, Cambridge (2001)zbMATHGoogle Scholar
  78. 78.
    Metzler, R., Oshanin, G., Redner, S.: First-Passage Phenomena and Their Applications. World Scientific Publishing, Singapore (2014)zbMATHGoogle Scholar
  79. 79.
    Holcman, D., Schuss, Z.: The narrow escape problem. SIAM Rev. 56, 213–257 (2014)MathSciNetzbMATHGoogle Scholar
  80. 80.
    Grebenkov, D.S.: Universal formula for the mean first passage time in planar domains. Phys. Rev. Lett. 117, 260201 (2016)Google Scholar
  81. 81.
    Rupprecht, J.-F., Bénichou, O., Grebenkov, D.S., Voituriez, R.: Exit time distribution in spherically symmetric two-dimensional domains. J. Stat. Phys. 158, 192–230 (2015)MathSciNetzbMATHGoogle Scholar
  82. 82.
    Grebenkov, D.S.: Laplacian eigenfunctions in NMR. I. A numerical tool. Concepts Magn. Reson. A 32A, 277–301 (2008)Google Scholar
  83. 83.
    Grebenkov, D.S., Helffer, B., Henry, R.: The complex airy operator on the line with a semipermeable barrier. SIAM J. Math. Anal. 49, 1844–1894 (2017)MathSciNetzbMATHGoogle Scholar
  84. 84.
    Crick, F.: Diffusion in embryogenesis. Nature 225, 420 (1970)Google Scholar
  85. 85.
    Alexander, S., Bernasconi, J., Schneider, W.R., Orbach, R.: Excitation dynamics in random one-dimensional systems. Rev. Mod. Phys. 53, 175–198 (1981)MathSciNetzbMATHGoogle Scholar
  86. 86.
    Sinai, Y.G.: The limiting behavior of a one-dimensional random walk in a random medium. Theory Probab. Appl. 27, 256–268 (1983)Google Scholar
  87. 87.
    Bernasconi, J., Schneider, W.R.: Diffusion in a one-dimensional lattice with random asymmetric transition rates. J. Phys. A: Math. Gen. 15, L729 (1982)Google Scholar
  88. 88.
    Azbel, M.: Diffusion: a Layman’s approach and its applications to one-dimensional random systems. Solid State Commun. 43, 515–517 (1982)Google Scholar
  89. 89.
    Derrida, B.: Velocity and diffusion constant of a periodic one-dimensional hopping model. J. Stat. Phys. 31, 433–450 (1983)MathSciNetGoogle Scholar
  90. 90.
    Noskowicz, S.H., Goldhirsch, I.: Average versus typical mean first-passage time in a random random walk. Phys. Rev. Lett. 61, 500–502 (1988)MathSciNetGoogle Scholar
  91. 91.
    Le Doussal, P.: First-passage time for random walks in random environments. Phys. Rev. Lett. 62, 3097–3097 (1989)Google Scholar
  92. 92.
    Murthy, K.P.N., Kehr, K.W.: Mean first-passage time of random walks on a random lattice. Phys. Rev. A 40, 2082–2087 (1989)Google Scholar
  93. 93.
    Kehr, K.W., Murthy, K.P.N.: Distribution of mean first-passage times in random chains due to disorder. Phys. Rev. A 41, 5728–5730 (1990)Google Scholar
  94. 94.
    Raykin, M.: First-passage probability of a random walk on a disordered one-dimensional lattice. J. Phys. A: Math. Gen. 26, 449 (1993)MathSciNetzbMATHGoogle Scholar
  95. 95.
    Le Doussal, P., Monthus, C., Fisher, D.S.: Random walkers in one-dimensional random environments: exact renormalization group analysis. Phys. Rev. E 59, 4795–4840 (1999)MathSciNetGoogle Scholar
  96. 96.
    Fieremans, E., Novikov, D.S., Jensen, J.H., Helpern, J.A.: Monte Carlo study of a two-compartment exchange model of diffusion. NMR Biomed. 23, 711–724 (2010)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratoire de Physique de la Matiere Condensee, Ecole Polytechnique, CNRS, IP ParisPalaiseauFrance

Personalised recommendations