Advertisement

Journal of Scientific Computing

, Volume 81, Issue 3, pp 1429–1445 | Cite as

A Second Order Traffic Flow Model with Lane Changing

  • Jiah Song
  • Smadar KarniEmail author
Article
  • 92 Downloads

Abstract

This paper concerns modeling and computation of traffic flow for a single in-lane flow as well as multilane flow with lane changing. We consider macroscopic partial differential equation models of two types: (i) First Order Models: equilibrium models, scalar models expressing car mass conservation; and (ii) Second Order Models: dynamic models, \(2 \times 2\) hyperbolic systems expressing mass conservation as well as vehicle acceleration rules. A new second order model is proposed in which the acceleration terms take lead from microscopic car-following models, and yield a nonlinear hyperbolic system with viscous and relaxation terms. Lane changing conditions are formulated and mass/momentum inter-lane exchange terms are derived. Numerical results are shown, illustrating the merit of the models in describing a rich array of realistic traffic scenarios including varying road conditions, lane closure, and stop-and-go flow patterns.

Keywords

Gas dynamics Conservation laws Hyperbolic systems Traffic flow 

Notes

Acknowledgements

S. Karni has benefitted from stimulating and insightful conversations during a couple of visits to the University of Zurich, Switzerland. The generous hospitality of Rémi Abgrall is gratefully acknowledged. S. Karni wishes to extend her sincere gratitude to Jack Haddad of the Technion, Israel, for stimulating discussions. The authors are also grateful to Romesh Saigal and Philip Roe for productive discussions.

References

  1. 1.
    Aw, A., Rascle, M.: Resurrection of “second order” models of traffic flow. SIAM J. Appl. Math. 60(3), 916–938 (2000)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bando, M., Hasebe, K., Nakayama, A., Shibata, A., Sugiyama, Y.: Dynamical model of traffic congestion and numerical simulation. Phys. Rev. E 51, 1035–1042 (1995)CrossRefGoogle Scholar
  3. 3.
    Benzoni-Gavage, S., Colombo, M.: An n-populations model for traffic flow. Eur. J. Appl. Math. 14, 587–612 (2003)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Berg, P., Mason, A., Woods, A.: Continuum approach to car-following models. Phys. Rev. E 61, 1056–1066 (2000)CrossRefGoogle Scholar
  5. 5.
    Chandler, R.E., Herman, R., Montroll, E.W.: Traffic dynamics: studies in car following. Oper. Res. 6, 165–184 (1958)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Colombo, R.M.: A \(2 \times 2\) hyperbolic traffic flow model. Math. Comput. Modell. 35, 203–223 (2002)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Daganzo, C.F.: Requiem for second-order fluid approximations of traffic flow. Transp. Res. Part B: Methodol. 29, 277–286 (1995)CrossRefGoogle Scholar
  8. 8.
    Del Castillo, J.M., Benítez, F.G.: On the functional form of the speed-density relationship—I: General theory. Transp. Res. Part B: Methodol. 29, 373–389 (1995)CrossRefGoogle Scholar
  9. 9.
    Greenberg, H.: An analysis of traffic flow. Oper. Res. 7, 79–85 (1959)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Greenshields, B.D., Bibbins, J.R., Channing, W.S., Miller, H.H.: A study of traffic capacity. In: Highway Research Board Proceedings (1935)Google Scholar
  11. 11.
    Helbing, D.: Improved fluid-dynamic model for vehicular traffic. Phys. Rev. E 51, 3164–3169 (1995)CrossRefGoogle Scholar
  12. 12.
    Helbing, D., Greiner, A.: Modeling and simulation of multilane traffic flow. Phys. Rev. E 55, 5498–5508 (1997)CrossRefGoogle Scholar
  13. 13.
    Jiang, R., Wu, Q., Zhu, Z.: Full velocity difference model for a car-following theory. Phys. Rev. E 64, 017101 (2001)CrossRefGoogle Scholar
  14. 14.
    Jiang, R., Wu, Q.-S., Zhu, Z.-J.: A new continuum model for traffic flow and numerical tests. Transp. Res. Part B: Methodol. 36, 405–419 (2002)CrossRefGoogle Scholar
  15. 15.
    Kerner, B.S., Konhäuser, P.: Cluster effect in initially homogeneous traffic flow. Phys. Rev. E 48, R2335 (1993)CrossRefGoogle Scholar
  16. 16.
    Klar, A., Wegener, R.: A hierarchy of models for multilane vehicular traffic I: modeling. SIAM J. Appl. Math. 59, 983–1001 (1998)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Klar, A., Wegener, R.: A hierarchy of models for multilane vehicular traffic II: Numerical investigations. SIAM J. Appl. Math. 59, 1002–1011 (1998)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Leo, C.J., Pretty, R.L.: Numerical simulation of macroscopic continuum traffic models. Transp. Res. Part B: Methodol. 26, 207–220 (1992)CrossRefGoogle Scholar
  19. 19.
    LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge (2002)Google Scholar
  20. 20.
    Lighthill, M.J., Whitham, G.B.: On kinematic waves. II. A theory of traffic flow on long crowded roads. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 229, 317–345 (1955)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Michalopoulos, P.G., Beskos, D.E., Yamauchi, Y.: Multilane traffic flow dynamics: some macroscopic considerations. Transp. Res. Part B: Methodol. 18, 377–395 (1984)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Payne, Models of freeway traffic and control. In: Mathematical Models of Public Systems, Simulation Council Proceedings Series, vol. 1, no 1, pp. 51–61 (1971) Google Scholar
  23. 23.
    Richards, P.I.: Shock waves on the highway. Oper. Res. 4, 42–51 (1956)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Roe, P.L.: Upwind Differencing Schemes for Hyperbolic Conservation Laws with Source Terms, pp. 41–51. Springer, Berlin (1987)zbMATHGoogle Scholar
  25. 25.
    Roe, P.L.: Fluctuation and signals—a framework for numerical evolution problems. In: Morton, K.W., Baines, M.J. (eds.) Numerical Methods for Fluid Dynamics, pp. 219–257. Academic Press, New York (1982)Google Scholar
  26. 26.
    Schochet, S.: The instant-response limit in Whitham’s nonlinear traffic-flow model: uniform well-posedness and global existence. Asymptot. Anal. 1, 263–282 (1988)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Song, J.: Mathematical modeling and simulations of traffic flow, Ph.D. Dissertation, University of Michigan (2019)Google Scholar
  28. 28.
    Sugiyama, Y., Fukui, M., Kikuchi, M., Hasebe, K., Nakayama, A., Katsuhiro, N., Tadaki, S.-I., Yukawa, S.: Traffic jams without bottlenecks–experimental evidence for the physical mechanism of the formation of a jam. N. J. Phys. 10, 033001 (2008)CrossRefGoogle Scholar
  29. 29.
    Whitham, G.B.: Linear and Nonlinear Waves. Wiley, London (1974)zbMATHGoogle Scholar
  30. 30.
    Wong, G.C.K., Wong, S.C.: A multi-class traffic flow model—an extension of LWR model with heterogeneous drivers. Transp. Res. Part A: Policy Pract. 36, 827–841 (2002)Google Scholar
  31. 31.
    Zhang, H.M.: A non-equilibrium traffic model devoid of gas-like behavior. Transp. Res. Part B: Methodol. 36, 275–290 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of MichiganAnn ArborUSA

Personalised recommendations