A Conforming DG Method for Linear Nonlocal Models with Integrable Kernels

  • Qiang Du
  • Xiaobo YinEmail author


The numerical solution of nonlocal constrained value problems with integrable kernels is considered. These nonlocal problems arise in nonlocal mechanics and nonlocal diffusion. The structure of the true solution to the problem is analyzed first. The analysis leads naturally to a new kind of discontinuous Galerkin method that can more efficiently solve the problem numerically. The new method is shown to be asymptotically compatible. Moreover, it has optimal convergence rate for any dimensional case under mild assumptions.


Nonlocal diffusion Peridynamic model Nonlocal model Integrable kernel Discontinuous Galerkin Finite element Convergence analysis Condition number 

Mathematics Subject Classification

82C21 65R20 74S05 46N20 45A05 



  1. 1.
    Aksoylu, B., Unlu, Z.: Conditioning analysis of nonlocal integral operators in fractional Sobolev spaces. SIAM J. Numer. Anal. 52, 653–677 (2014)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Aksoylu, B., Mengesha, T.: Results on nonlocal boundary value problems. Numer. Funct. Anal. Optim. 31(12), 1301–1317 (2010)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Aksoylu, B., Parks, M.L.: Variational theory and domain decomposition for nonlocal problems. Appl. Math. Comput. 217(14), 6498–6515 (2011)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Andreu-Vaillo, F., Mazón, J.M., Rossi, J.D., Julián T.-M.J.: Nonlocal diffusion problems. Number 165. American Mathematical Soc. (2010)Google Scholar
  5. 5.
    Arnold, D.N., Brezzi, F., Cockburn, B., Donatella Marini, L.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749–1779 (2002)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Askari, E., Bobaru, F., Lehoucq, RB., Parks, ML., Silling, SA., Weckner, O: Peridynamics for multiscale materials modeling. In: Journal of Physics: Conference Series, vol. 125, p. 012078. IOP Publishing (2008)Google Scholar
  7. 7.
    Bobaru, F., Yang, M., Alves, L.F., Silling, S.A., Askari, E., Xu, J.: Convergence, adaptive refinement, and scaling in 1D peridynamics. Int. J. Numer. Methods Eng. 77(6), 852–877 (2009)zbMATHGoogle Scholar
  8. 8.
    Brenner, S., Scott, R.: The Mathematical Theory of Finite Element Methods, vol. 15. Springer, Berlin (2007)Google Scholar
  9. 9.
    Burch, N., Lehoucq, R.: Classical, nonlocal, and fractional diffusion equations on bounded domains. Int. J. Multiscale Comput. Eng. 9(6), 661–674 (2011)Google Scholar
  10. 10.
    Chen, X., Gunzburger, M.: Continuous and discontinuous finite element methods for a peridynamics model of mechanics. Comput. Methods Appl. Mech. Eng. 200(9), 1237–1250 (2011)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Chen, Z., Zou, J.: Finite element methods and their convergence for elliptic and parabolic interface problems. Numer. Math. 79(2), 175–202 (1998)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Du, Q., Ju, L., Lu, J.: A discontinuous Galerkin method for one-dimensional time-dependent nonlocal diffusion problems. Math. Comput. 88, 123–147 (2019)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Du, Q., Yang, J., Zhou, Z.: Analysis of a nonlocal-in-time parabolic equation. Discrete Contin. Dyn. Syst. B 22(2), 339–368 (2017)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Du, Q.: An invitation to nonlocal modeling, analysis and computation. Proc. Int. Congr. Math. 3, 3523–3552 (2018)Google Scholar
  15. 15.
    Du, Q.: Nonlocal modeling, analysis and computation. SIAM (2019)Google Scholar
  16. 16.
    Du, Q., Gunzburger, M., Lehoucq, R.B., Zhou, K.: Analysis and approximation of nonlocal diffusion problems with volume constraints. SIAM Rev. 54(4), 667–696 (2012)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Du, Q., Gunzburger, M., Lehoucq, R.B., Zhou, K.: A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws. Math. Models Methods Appl. Sci. 23(03), 493–540 (2013)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Du, Q., Ju, L., Tian, L., Zhou, K.: A posteriori error analysis of finite element method for linear nonlocal diffusion and peridynamic models. Math. Comput. 82(284), 1889–1922 (2013)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Du, Q., Tao, Y., Tian, X.: A peridynamic model of fracture mechanics with bond-breaking. J. Elast. 132(2), 197–218 (2018)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Du, Q., Zhou, K.: Mathematical analysis for the peridynamic nonlocal continuum theory. ESAIM Math. Model. Numer. Anal. 45(2), 217–234 (2011)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Emmrich, E., Weckner, O., et al.: On the well-posedness of the linear peridynamic model and its convergence towards the navier equation of linear elasticity. Commun. Math. Sci. 5(4), 851–864 (2007)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Kilic, B., Madenci, E.: Coupling of peridynamic theory and the finite element method. J. Mech. Mater. Struct. 5(5), 707–733 (2010)Google Scholar
  23. 23.
    Macek, R.W., Silling, S.A.: Peridynamics via finite element analysis. Finite Elem. Anal. Des. 43(15), 1169–1178 (2007)MathSciNetGoogle Scholar
  24. 24.
    Oterkus, E., Madenci, E.: Peridynamic analysis of fiber-reinforced composite materials. J. Mech. Mater. Struct. 7(1), 45–84 (2012)Google Scholar
  25. 25.
    Seleson, P., Parks, M.L., Gunzburger, M., Lehoucq, R.B.: Peridynamics as an upscaling of molecular dynamics. Multiscale Model. Simul. 8(1), 204–227 (2009)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Silling, S.A.: Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48(1), 175–209 (2000)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Silling, S.A., Askari, E.: A meshfree method based on the peridynamic model of solid mechanics. Comput. Struct. 83(17–18), 1526–1535 (2005)Google Scholar
  28. 28.
    Silling, S.A., Lehoucq, R.B.: Peridynamic theory of solid mechanics. Adv. Appl. Mech. 44, 73–168 (2010)Google Scholar
  29. 29.
    Silling, S.A., Weckner, O., Askari, E., Bobaru, F.: Crack nucleation in a peridynamic solid. Int. J. Fract. 162(1–2), 219–227 (2010)zbMATHGoogle Scholar
  30. 30.
    Silling, S.A., Zimmermann, M., Abeyaratne, R.: Deformation of a peridynamic bar. J. Elast. 73(1–3), 173–190 (2003)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Tao, Y., Tian, X., Du, Q.: Nonlocal diffusion and peridynamic models with Neumann type constraints and their numerical approximations. Appl. Math. Comput. 305, 282–298 (2017)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Tao, Y., Tian, X., Qiang, D.: Nonlocal diffusion and peridynamic models with Neumann type constraints and their numerical approximations. Appl. Math. Comput. 305, 282–298 (2017)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Tian, X., Qiand, D.: Analysis and comparison of different approximations to nonlocal diffusion and linear peridynamic equations. SIAM J. Numer. Anal. 51(6), 3458–3482 (2013)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Tian, X., Qiang, D.: Asymptotically compatible schemes and applications to robust discretization of nonlocal models. SIAM J. Numer. Anal. 52(4), 1641–1665 (2014)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Wang, H., Tian, H.: A fast Galerkin method with efficient matrix assembly and storage for a peridynamic model. J. Comput. Phys. 231(23), 7730–7738 (2012)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Xu, F.: A multiscale implementation of finite element methods for nonlocal models of mechanics and diffusion. Ph.D. thesis, The Florida State University (2015)Google Scholar
  37. 37.
    Xu, F., Gunzburger, M., Burkardt, J.: A multiscale method for nonlocal mechanics and diffusion and for the approximation of discontinuous functions. Comput. Methods Appl. Mech. Eng. 307, 117–143 (2016)MathSciNetGoogle Scholar
  38. 38.
    Zhou, K., Du, Q.: Mathematical and numerical analysis of linear peridynamic models with nonlocal boundary conditions. SIAM J. Numer. Anal. 48(5), 1759–1780 (2010)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Zhou, K., Qiang, D.: Mathematical and numerical analysis of linear peridynamic models with nonlocal boundary conditions. SIAM J. Numer. Anal. 48(5), 1759–1780 (2010)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Zienkiewicz, O.C., Zhu, J.Z.: A simple error estimator and adaptive procedure for practical engineerng analysis. Int. J. Numer. Methods Eng. 24(2), 337–357 (1987)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Applied Physics and Applied MathematicsColumbia UniversityNew YorkUSA
  2. 2.Hubei Key Laboratory of Mathematical Sciences & School of Mathematics and StatisticsCentral China Normal UniversityWuhanChina

Personalised recommendations