Advertisement

The High-Order Mixed Mimetic Finite Difference Method for Time-Dependent Diffusion Problems

  • Gianmarco Manzini
  • Gianluca Maguolo
  • Mario PuttiEmail author
Article
  • 22 Downloads

Abstract

We propose an arbitrary-order accurate mimetic finite difference (MFD) method for the approximation of time-dependent diffusion problems in mixed form on unstructured polygonal and polyhedral meshes. The method of lines (MOL) is used to combine spatial and temporal discretizations. The spatial scheme requires the definition of a high-order approximation of the divergence and gradient operators and the two inner products for the discrete analogs of fluxes and scalar unknowns. The discrete divergence and gradient operators are built according to a discrete duality relation. The inner product for the flux grid functions is built by explicitly imposing the conditions of consistency and stability. The family of semi-discrete mimetic methods is proved theoretically to be energy-stable as the corresponding continuous problem. Then, a full discretization is derived by combining via MOL the MFD method of order k with time marching schemes from the backward differentiation formula of order \(k+2\). Optimal order of accuracy is demonstrated for the scalar variable and verified numerically by solving the time-dependent diffusion problems with a variable diffusion tensor for k from 0 to 3 on three different unstructured mesh families.

Keywords

Mimetic finite difference method Polygonal mesh High-order discretization Time-dependent diffusion problem Mixed formulation 

Mathematics Subject Classification

65M06 65M12 65M20 76R99 

Notes

Acknowledgements

This work was partially supported by the Laboratory Directed Research and Development program (LDRD), under the auspices of the National Nuclear Security Administration of the U.S. Department of Energy (DOE) at Los Alamos National Laboratory operated by Los Alamos National Security LLC under Contract No. DE-AC52-06NA25396, and the Advanced Scientific Computing Research (ASCR) Program in Applied Mathematics of the DOE Office of Science. The University of Padova “Project SID-2016- Approximation and discretization of PDEs on Manifolds for Environmental Modeling” is also acknowledged.

References

  1. 1.
    Shashkov, M., Steinberg, S.: Support-operator finite-difference algorithms for general elliptic problems. J. Comput. Phys. 118(1), 131–151 (1995).  https://doi.org/10.1006/jcph.1995.1085 MathSciNetzbMATHGoogle Scholar
  2. 2.
    Shashkov, M.: Conservative Finite-Difference Methods on General Grids. CRC Press, Boca Raton (1996)zbMATHGoogle Scholar
  3. 3.
    da Veiga, Beirão L., Lipnikov, K., Manzini, G.: The Mimetic Finite Difference Method, MS&A. Modeling, Simulations and Applications, vol. 11, I edn. Springer, Berlin (2014)zbMATHGoogle Scholar
  4. 4.
    Brezzi, F., Lipnikov, K., Shashkov, M.: Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes. SIAM J. Numer. Anal. 43(5), 1872–1896 (2005)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Brezzi, F., Lipnikov, K., Shashkov, M.: Convergence of mimetic finite difference method for diffusion problems on polyhedral meshes with curved faces. Math. Models Methods Appl. Sci. 16(2), 275–297 (2006)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Brezzi, F., Lipnikov, K., Shashkov, M., Simoncini, V.: A new discretization methodology for diffusion problems on generalized polyhedral meshes. Comput. Methods Appl. Mech. Eng. 196(37–40), 3682–3692 (2007)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Brezzi, F., Lipnikov, K., Simoncini, V.: A family of mimetic finite difference methods on polygonal and polyhedral meshes. Math. Models Methods Appl. Sci. 15(10), 1533–1551 (2005)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Manzini, G., Lipnikov, K., Moulton, J.D., Shashkov, M.: Convergence analysis of the mimetic finite difference method for elliptic problems with staggered discretizations of diffusion coefficients. SIAM J. Numer. Anal. 55(6), 2956–2981 (2017).  https://doi.org/10.1137/16M1108479 MathSciNetzbMATHGoogle Scholar
  9. 9.
    Gyrya, V., Lipnikov, K., Manzini, G.: The arbitrary order mixed mimetic finite difference method for the diffusion equation. ESAIM: Math. Modell. Numer. Anal. 50(3), 851–877 (2016)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Lipnikov, K., Manzini, G., Moulton, J.D., Shashkov, M.: The mimetic finite difference method for elliptic and parabolic problems with a staggered discretization of diffusion coefficient. J. Comput. Phys. 305, 111–126 (2016).  https://doi.org/10.1016/j.jcp.2015.10.031 MathSciNetzbMATHGoogle Scholar
  11. 11.
    da Veiga, Beirão L., Manzini, G., Putti, M.: Post-processing of solution and flux for the nodal mimetic finite difference method. Numer. Methods PDEs 31(1), 336–363 (2015)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Lipnikov, K., Manzini, G.: High-order mimetic method for unstructured polyhedral meshes. J. Comput. Phys. 272, 360–385 (2014)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Gyrya, V., Lipnikov, K., Manzini, G., Svyatskiy, D.: M-adaptation in the mimetic finite difference method. Math. Models Methods Appl. Sci. 24(8), 1621–1663 (2014)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Brezzi, F., Buffa, A., Manzini, G.: Mimetic inner products for discrete differential forms. J. Comput. Phys. 257–Part B, 1228–1259 (2014)zbMATHGoogle Scholar
  15. 15.
    da Veiga, Beirão L., Lipnikov, K., Manzini, G.: Arbitrary order nodal mimetic discretizations of elliptic problems on polygonal meshes. SIAM J. Numer. Anal. 49(5), 1737–1760 (2011)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Lipnikov, K., Manzini, G., Svyatskiy, D.: Analysis of the monotonicity conditions in the mimetic finite difference method for elliptic problems. J. Comput. Phys. 230(7), 2620–2642 (2011)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Cangiani, A., Gardini, F., Manzini, G.: Convergence of the mimetic finite difference method for eigenvalue problems in mixed form. Comput. Methods Appl. Mech. Eng. 200(9–12), 1150–1160 (2011).  https://doi.org/10.1016/j.cma.2010.06.011 MathSciNetzbMATHGoogle Scholar
  18. 18.
    Lipnikov, K., Manzini, G., Brezzi, F., Buffa, A.: The mimetic finite difference method for 3D magnetostatics fields problems. J. Comput. Phys. 230(2), 305–328 (2011).  https://doi.org/10.1016/j.jcp.2010.09.007 MathSciNetzbMATHGoogle Scholar
  19. 19.
    da Veiga, Beirão L., Droniou, J., Manzini, G.: A unified approach to handle convection term in finite volumes and mimetic discretization methods for elliptic problems. IMA J. Numer. Anal. 31(4), 1357–1401 (2011)MathSciNetzbMATHGoogle Scholar
  20. 20.
    da Veiga, Beirão L., Lipnikov, K., Manzini, G.: Error analysis for a mimetic discretization of the steady Stokes problem on polyhedral meshes. SIAM J. Numer. Anal. 48(4), 1419–1443 (2010).  https://doi.org/10.1137/090757411 MathSciNetzbMATHGoogle Scholar
  21. 21.
    da Veiga, Beirão L., Gyrya, V., Lipnikov, K., Manzini, G.: Mimetic finite difference method for the Stokes problem on polygonal meshes. J. Comput. Phys. 228(19), 7215–7232 (2009). 10.1016/j.jcp.2009.06.034MathSciNetzbMATHGoogle Scholar
  22. 22.
    da Veiga, Beirão L., Lipnikov, K., Manzini, G.: Convergence analysis of the high-order mimetic finite difference method. Numerische Mathematik 113(3), 325–356 (2009).  https://doi.org/10.1007/s00211-009-0234-6 MathSciNetzbMATHGoogle Scholar
  23. 23.
    Cangiani, A., Manzini, G., Russo, A.: Convergence analysis of a mimetic finite difference method for elliptic problems. SIAM J. Numer. Anal. 47(4), 2612–2637 (2009).  https://doi.org/10.1137/080717560 MathSciNetzbMATHGoogle Scholar
  24. 24.
    Cangiani, A., Manzini, G.: Flux reconstruction and solution post-processing in mimetic finite difference methods. Comput. Methods Appl. Mech. Eng. 197(9–12), 933–945 (2008).  https://doi.org/10.1016/j.cma.2007.09.019 MathSciNetzbMATHGoogle Scholar
  25. 25.
    da Veiga, Beirão L., Manzini, G.: A higher-order formulation of the mimetic finite difference method. SIAM J. Sci. Comput. 31(1), 732–760 (2008)MathSciNetzbMATHGoogle Scholar
  26. 26.
    da Veiga, Beirão L., Manzini, G.: An a-posteriori error estimator for the mimetic finite difference approximation of elliptic problems. Int. J. Numer. Methods Eng. 76(11), 1696–1723 (2008).  https://doi.org/10.1002/nme.2377 MathSciNetzbMATHGoogle Scholar
  27. 27.
    Antonietti, P.F., Bigoni, N., Verani, M.: Mimetic discretizations of elliptic control problems. J. Sci. Comput. 56(1), 14–27 (2013)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Antonietti, P.F., da Veiga, Beirão L., Verani, M.: A mimetic discretization of elliptic obstacle problems. Math. Comp. 82(283), 1379–1400 (2013)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Antonietti, P.F., da Veiga, Beirão L., Bigoni, N., Verani, M.: Mimetic finite differences for nonlinear and control problems. Math. Models Methods Appl. Sci. 24(8), 1457–1493 (2014)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Antonietti, P.F., Formaggia, L., Scotti, A., Verani, M., Verzott, N.: Mimetic finite difference approximation of flows in fractured porous media. ESAIM Math. Model. Numer. Anal. 50(3), 809–832 (2016)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Antonietti, P.F., da Veiga, Beirão L., Lovadina, C., Verani, M.: Hierarchical a posteriori error estimators for the mimetic discretization of elliptic problems. SIAM J. Numer. Anal. 51(1), 654–675 (2013)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Antonietti, P.F., Bigoni, N., Verani, M.: Mimetic finite difference approximation of quasilinear elliptic problems. Calcolo 52(1), 45–67 (2015)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Lipnikov, K., Manzini, G., Shashkov, M.: Mimetic finite difference method. J. Computational Physics 257–Part B, 1163–1227 (2014). Review paperMathSciNetzbMATHGoogle Scholar
  34. 34.
    Lipnikov, K., Manzini, G.: Discretization of mixed formulations of elliptic problems on polyhedral meshes. In: Barrenechea, G.R., Brezzi, F., Cangiani, A., Georgoulis, E.H. (eds.) Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations. Lecture Notes in Computational Science and Engineering, vol. 114, pp. 309–340. Springer, Berlin (2016)Google Scholar
  35. 35.
    Wachspress, E.: A Rational Finite Element Basis. Academic Press, Cambridge (1975)zbMATHGoogle Scholar
  36. 36.
    Sukumar, N., Tabarraei, A.: Conforming polygonal finite elements. Int. J. Numer. Meth. Eng. 61(12), 2045–2066 (2004)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Droniou, J.: Finite volume schemes for diffusion equations: introduction to and review of modern methods. Math. Models Methods Appl. Sci. 24(08), 1575–1619 (2014)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Di Pietro, D.A., Ern, A.: Hybrid high-order methods for variable diffusion problems on general meshes. Comptes Rendus Mathématique 353, 31–34 (2014)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Cangiani, A., Dong, Z., Georgoulis, E.H., Houston, P.: hp-Version Discontinuous Galerkin Methods on Polygonal and Polyhedral Meshes. SpringerBriefs in Mathematics. Springer, Berlin (2017)zbMATHGoogle Scholar
  40. 40.
    Di Pietro, D.A., Ern, A.: Mathematical Aspects of Discontinuous Galerkin Methods. Mathématiques et Applications. Springer, Berlin (2011)Google Scholar
  41. 41.
    Cangiani, A., Georgoulis, E.H., Houston, P.: \(hp\)-Version discontinuous Galerkin methods on polygonal and polyhedral meshes. Math. Models Methods Appl. Sci. 24(10), 2009–2041 (2014)MathSciNetzbMATHGoogle Scholar
  42. 42.
    Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47(2), 1319–1365 (2009)MathSciNetzbMATHGoogle Scholar
  43. 43.
    Wang, J., Ye, X.: A weak Galerkin mixed finite element method for second order elliptic problems. Math. Comput. 83, 2101–2126 (2014)MathSciNetzbMATHGoogle Scholar
  44. 44.
    da Veiga, Beirão L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L.D., Russo, A.: Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23, 119–214 (2013)MathSciNetzbMATHGoogle Scholar
  45. 45.
    Manzini, G., Russo, A., Sukumar, N.: New perspectives on polygonal and polyhedral finite element methods. Math. Models Methods Appl. Sci. 24(8), 1665–1699 (2014)MathSciNetzbMATHGoogle Scholar
  46. 46.
    Di Pietro, D.A., Droniou, J., Manzini, G.: Discontinuous skeletal gradient discretisation methods on polytopal meshes. J. Comput. Phys. 355, 397–425 (2018).  https://doi.org/10.1016/j.jcp.2017.11.018 MathSciNetzbMATHGoogle Scholar
  47. 47.
    Süli, E., Mayers, D.F.: An Introduction to Numerical Analysis. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
  48. 48.
    Evans, C.L.: Partial Differential Equations, Graduate Studies in Mathematics, vol. 19. AMS, Providence (1998)Google Scholar
  49. 49.
    Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications. Springer Series in Computational Mathematics. Springer, Berlin (2013)zbMATHGoogle Scholar
  50. 50.
    Johnson, C., Thomee, V.: Error estimates for some mixed finite element methods for parabolic type problems. ESAIM: Math. Modell. Numer. Anal.- Modélisation Mathématique et Analyse Numérique 15(1), 41–78 (1981)MathSciNetzbMATHGoogle Scholar
  51. 51.
    Boffi, D., Gastaldi, L.: Analysis of finite element approximation of evolution problems in mixed form. SIAM J. Numer. Anal. 42(4), 1502–1526 (2004)MathSciNetzbMATHGoogle Scholar
  52. 52.
    Bause, M., Radu, F.A., Köcher, U.: Error analysis for discretizations of parabolic problems using continuous finite elements in time and mixed finite elements in space. Numer. Math. 137(4), 773–818 (2017)MathSciNetzbMATHGoogle Scholar
  53. 53.
    Gao, H., Qiu, W.: Error analysis of mixed finite element methods for nonlinear parabolic equations. J. Sci. Comput. 77(3), 1660–1678 (2018)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Group T-5, Theoretical DivisionLos Alamos National LaboratoryLos AlamosUSA
  2. 2.Department of Information EngineeringUniversity of PaduaPaduaItaly
  3. 3.Department of Mathematics “Tullio Levi-Civita”University of PaduaPaduaItaly

Personalised recommendations