A Viscosity-Independent Error Estimate of a Pressure-Stabilized Lagrange–Galerkin Scheme for the Oseen Problem

  • Shinya UchiumiEmail author


We consider a pressure-stabilized Lagrange–Galerkin scheme for the transient Oseen problem with small viscosity. In the scheme we use the equal-order approximation of order k for both the velocity and pressure, and add a symmetric pressure stabilization term. We show an error estimate for the velocity with a constant independent of the viscosity if the exact solution is sufficiently smooth. We also show an error estimate of a discrete primitive of the pressure. Numerical examples show high accuracy of the scheme for problems with small viscosity.


Transient Oseen problem Lagrange–Galerkin scheme Finite element method Equal-order elements Symmetric pressure stabilization Dependence on viscosity 

Mathematics Subject Classification

65M12 65M25 65M60 76D07 76M10 



The author is thankful to anonymous reviewers for their valuable comments that improve this paper. The author would like to express his gratitude to Professor Emeritus Masahisa Tabata of Kyushu University for valuable discussions and encouragements. This work was supported by Japan Society for the Promotion of Science (JSPS) under Grant-in-Aid for JSPS Fellows, No. 26\(\cdot \)964, and under the Japanese-German Graduate Externship (Mathematical Fluid Dynamics), and by CREST, Japan Science and Technology Agency.


  1. 1.
    Achdou, Y., Guermond, J.L.: Convergence analysis of a finite element projection/Lagrange–Galerkin method for the incompressible Navier–Stokes equations. SIAM J. Numer. Anal. 37(3), 799–826 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Becker, R., Braack, M.: A finite element pressure gradient stabilization for the Stokes equations based on local projections. Calcolo 38(4), 173–199 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Benzi, M., Golub, G., Liesen, J.: Numerical solution of saddle point problems. Acta Numer. 14, 1–137 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bermejo, R., Saavedra, L.: A second order in time local projection stabilized Lagrange–Galerkin method for Navier–Stokes equations at high Reynolds numbers. Comput. Math. Appl. 72(4), 820–845 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bochev, P., Dohrmann, C., Gunzburger, M.: Stabilization of low-order mixed finite elements for the Stokes equations. SIAM J. Numer. Anal. 44(1), 82–101 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications. Springer, Berlin (2013)CrossRefzbMATHGoogle Scholar
  7. 7.
    Brezzi, F., Fortin, M.: A minimal stabilisation procedure for mixed finite element methods. Numer. Math. 89(3), 457–491 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Brezzi, F., Pitkäranta, J.: On the stabilization of finite element approximations of the Stokes equations. In: Hackbusch, W. (ed.) Efficient Solutions of Elliptic Systems, pp. 11–19. Vieweg, Wiesbaden (1984)CrossRefGoogle Scholar
  9. 9.
    Burman, E.: Pressure projection stabilizations for Galerkin approximations of Stokes’ and Darcy’s problem. Numer. Methods Partial Differ. Equ. 24(1), 127–143 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Burman, E., Fernández, M.A.: Continuous interior penalty finite element method for the time-dependent Navier–Stokes equations: space discretization and convergence. Numer. Math. 107(1), 39–77 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Burman, E., Fernández, M.A.: Galerkin finite element methods with symmetric pressure stabilization for the transient Stokes equations: stability and convergence analysis. SIAM J. Numer. Anal. 47(1), 409–439 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Ciarlet, P.G.: The Finite Element Method for Elliptic Problems, Classics in Applied Mathematics, vol. 40. SIAM, Philadelphia (2002)CrossRefGoogle Scholar
  13. 13.
    Clément, P.: Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 9(2), 77–84 (1975)MathSciNetzbMATHGoogle Scholar
  14. 14.
    De Frutos, J., García-Archilla, B., John, V., Novo, J.: Grad-div stabilization for the evolutionary Oseen problem with inf-sup stable finite elements. J. Sci. Comput. 66(3), 991–1024 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    De Frutos, J., García-Archilla, B., John, V., Novo, J.: Error analysis of non inf-sup stable discretizations of the time-dependent Navier–Stokes equations with local projection stabilization. IMA J. Numer. Anal. (2018). zbMATHGoogle Scholar
  16. 16.
    Dohrmann, C.R., Bochev, P.B.: A stabilized finite element method for the Stokes problem based on polynomial pressure projections. Int. J. Numer. Methods Fluids 46(2), 183–201 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Douglas Jr., J., Russell, T.: Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures. SIAM J. Numer. Anal. 19(5), 871–885 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Douglas Jr., J., Wang, J.: An absolutely stabilized finite element method for the Stokes problem. Math. Comput. 52, 495–508 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Franca, L., Stenberg, R.: Error analysis of some Galerkin least squares methods for the elasticity equations. SIAM J. Numer. Anal. 28(6), 1680–1697 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Glowinski, R., Le Tallec, P.: Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics. SIAM, Philadelphia (1989)CrossRefzbMATHGoogle Scholar
  21. 21.
    Hecht, F.: New development in FreeFem++. J. Numer. Math. 20(3–4), 251–265 (2012)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Heywood, J.G., Rannacher, R.: Finite-element approximation of the nonstationary Navier–Stokes problem. Part IV: error analysis for second-order time discretization. SIAM J. Numer. Anal. 27(2), 353–384 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Hughes, T.J.R., Franca, L.P., Balestra, M.: A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuška–Brezzi condition: a stable Petrov–Galerkin formulation of the Stokes problem accommodating equal-order interpolations. Comput. Methods Appl. Mech. Eng. 59(1), 85–99 (1986)CrossRefzbMATHGoogle Scholar
  24. 24.
    Jia, H., Li, K., Liu, S.: Characteristic stabilized finite element method for the transient Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 199(45–48), 2996–3004 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    John, V., Knobloch, P., Novo, J.: Finite elements for scalar convection-dominated equations and incompressible flow problems: a never ending story? Comput. Vis. Sci. 19(5–6), 47–63 (2018)MathSciNetCrossRefGoogle Scholar
  26. 26.
    John, V., Linke, A., Merdon, C., Neilan, M., Rebholz, L.: On the divergence constraint in mixed finite element methods for incompressible flows. SIAM Rev. 59(3), 492–544 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    John, V., Novo, J.: Analysis of the pressure stabilized Petrov–Galerkin method for the evolutionary Stokes equations avoiding time step restrictions. SIAM J. Numer. Anal. 53(2), 1005–1031 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Laursen, M.E., Gellert, M.: Some criteria for numerically integrated matrices and quadrature formulas for triangles. Int. J. Numer. Methods Eng. 12(1), 67–76 (1978)CrossRefzbMATHGoogle Scholar
  29. 29.
    Notsu, H.: Numerical computations of cavity flow problems by a pressure stabilized characteristic-curve finite element scheme. Trans. Jpn. Soc. Comput. Eng. Sci. (2008). ONLINE ISSN: 1347-8826Google Scholar
  30. 30.
    Notsu, H., Tabata, M.: A combined finite element scheme with a pressure stabilization and a characteristic-curve method for the Navier–Stokes equations. Tran. Jpn. Soc. Ind. Appl. Math. 18(3), 427–445 (2008). (in Japanese)Google Scholar
  31. 31.
    Notsu, H., Tabata, M.: Error estimates of a pressure-stabilized characteristics finite element scheme for the Oseen equations. J. Sci. Comput. 65(3), 940–955 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Notsu, H., Tabata, M.: Error estimates of a stabilized Lagrange–Galerkin scheme for the Navier–Stokes equations. ESAIM Math. Model. Numer. Anal. 50(2), 361–380 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Olshanskii, M., Reusken, A.: Grad-div stablilization for Stokes equations. Math. Comput. 73, 1699–1718 (2004)CrossRefzbMATHGoogle Scholar
  34. 34.
    Pironneau, O.: On the transport-diffusion algorithm and its applications to the Navier–Stokes equations. Numer. Math. 38(3), 309–332 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Rui, H., Tabata, M.: A second order characteristic finite element scheme for convection-diffusion problems. Numer. Math. 92(1), 161–177 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Silvester, D.: Optimal low order finite element methods for incompressible flow. Comput. Methods Appl. Mech. Eng. 111(3–4), 357–368 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Süli, E.: Convergence and nonlinear stability of the Lagrange–Galerkin method for the Navier–Stokes equations. Numer. Math. 53(4), 459–483 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Tabata, M., Uchiumi, S.: A genuinely stable Lagrange–Galerkin scheme for convection-diffusion problems. Jpn. J. Ind. Appl. Math. 33(1), 121–143 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Tabata, M., Uchiumi, S.: An exactly computable Lagrange–Galerkin scheme for the Navier–Stokes equations and its error estimates. Math. Comput. 87, 39–67 (2018)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Tanaka, K., Suzuki, A., Tabata, M.: A characteristic finite element method using the exact integration. Annu. Rep. Res. Inst. Inf. Technol. Kyushu Univ. 2, 11–18 (2002). (in Japanese) Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Applied MathematicsWaseda UniversityTokyoJapan
  2. 2.Department of MathematicsGakushuin UniversityTokyoJapan

Personalised recommendations