Advertisement

A Positivity Preserving Moving Mesh Finite Element Method for the Keller–Segel Chemotaxis Model

  • M. SulmanEmail author
  • T. Nguyen
Article
  • 42 Downloads

Abstract

In this paper, we present an efficient adaptive moving mesh finite element method for the numerical solution of the Keller–Segel chemotaxis model. The mesh points are continuously redistributed by a coordinate transformation defined from the computational domain to the physical domain to concentrate the grid nodes in regions of large solution variations in the physical domain. The Keller–Segel equations are discretized using an implicit-explicit finite element method using piecewise polynomials defined on triangular meshes. The spatial discretization scheme is designed with a positivity preserving property, if the initial solutions of the physical model are positive then the computed solutions stay positive at all time levels. Several numerical experiments are presented to demonstrate the performance of the proposed method for solving Keller–Segel model. The numerical results show that the proposed method can reduce the computational cost while improving the overall accuracy of the computed solutions of the Keller–Segel model.

Keywords

Adaptive moving mesh Finite element discretization Positivity preserving Chemotaxis models Advection–diffusion–reaction Finite time blow-up 

Notes

Acknowledgements

The second author was partially supported by the NSF MRI Award No. 1531923, and would like to acknowledge the funding he received from the Graduate School at Wright State University.

References

  1. 1.
    Keller, E.F., Segel, L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399–415 (1970)zbMATHGoogle Scholar
  2. 2.
    Keller, E.F., Segel, L.A.: Model for chemotaxis. J. Theor. Biol. 30, 225–234 (1971)zbMATHGoogle Scholar
  3. 3.
    Keller, E.F., Segel, L.A.: Traveling bands of chemotactic bacteria: a theoretical analysis. J. Theor. Biol. 30, 235–248 (1971)zbMATHGoogle Scholar
  4. 4.
    Alder, J.: Chemotaxis in bacteria. Ann. Rev. Biochem. 44, 341–356 (1975)Google Scholar
  5. 5.
    Bonner, J.T.: The Sellular Slime Molds. Princeton University Press, Princeton (1967)Google Scholar
  6. 6.
    Budrene, E.O., Berg, H.C.: Complex patterns formed by motile cells of escherichia coli. Nature 349, 630–633 (1991)Google Scholar
  7. 7.
    Budrene, E.O., Berg, H.C.: Dynamics of formation of symmetrical patterns by chemotactic bacteria. Nature 376, 49–53 (1995)Google Scholar
  8. 8.
    Childress, S., Percus, J.K.: Nonlinear aspects of chemotaxis. Math. Biosci. 56, 217–237 (1981)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Cohen, M.H., Robertson, A.: Wave propagation in the early stages of aggregation of cellular slime molds. J. Theor. Biol. 31, 101–118 (1971)Google Scholar
  10. 10.
    Herrero, M., Medina, E., VelÃzquez, J.: Finite-time aggregation into a single point in a reaction-diffusion system. Nonlinearity 10(6), 1739–1754 (1997)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Herrero, M., Velázquez, J.: A blow-up mechanism for a chemotaxis model. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 24, 633–683 (1997)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Marrocco, A.: Numerical simulation of chemotactic bacteria aggregation via mixed finite elements. ESIAM: Math. Model. Numer. Anal. 37(4), 617–630 (2003)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Filbet, F.: A finite volume scheme for the Patlak–Keller–Segel chemotaxis model. Numer. Math. 104(4), 457–488 (2006).  https://doi.org/10.1007/s00211-006-0024-3 MathSciNetzbMATHGoogle Scholar
  14. 14.
    Saito, N.: Conservative upwind finite-element method for a simplified Keller–Segel system modelling chemotaxis. IMA J. Numer. Anal. 27(2), 332–365 (2007).  https://doi.org/10.1093/imanum/drl018 MathSciNetzbMATHGoogle Scholar
  15. 15.
    Chertock, A., Kurganov, A.: A second-order positivity preserving central-upwind scheme for chemotaxis and haptotaxis models. Numer. Math. 111(2), 457–488 (2008).  https://doi.org/10.1007/s00211-008-0188-0 MathSciNetzbMATHGoogle Scholar
  16. 16.
    Tyson, R., Stern, L.J., Leveque, R.J.: Fractional step methods applied to a chemotaxis model. J. Math. Biol. 41, 455–475 (1996)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Li, X., Shu, C., Yang, Y.: Local discontinuous Galerkin method for the Keller–Segel chemotaxis model. J. Sci. Comput. 73, 943–967 (2017)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Epshteyn, Y., Kurganov, A.: New interior penalty discontinuous Galerkin methods for the Keller–Segel chemotaxis model. SIAM J. Numer. Anal. 47, 368–408 (2008)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Budd, C., Carretero-González, R., Russell, R.: Precise computations of chemotactic collapse using moving mesh methods. J. Comput. Phys. 202(2), 463–487 (2005).  https://doi.org/10.1016/j.jcp.2004.07.010 MathSciNetzbMATHGoogle Scholar
  20. 20.
    Thompson, J.F., Warsi, Z.U.A., Mastin, C.W.: Numerical Grid Generation: Foundations and Applications. North-Holland Publishing Co., New York (1985)zbMATHGoogle Scholar
  21. 21.
    Dorfi, E., Drury, L.: Simple adaptive grids for 1-D initial value problems. J. Comput. Phys. 69(1), 175–195 (1987).  https://doi.org/10.1016/0021-9991(87)90161-6 zbMATHGoogle Scholar
  22. 22.
    Huang, W., Ren, Y., Russell, R.D.: Moving mesh partial differential equations (MMPDES) based on the equidistribution principle. SIAM J. Numer. Anal. 31(3), 709–730 (1994)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Huang, W., Russel, R.D.: Adaptive Moving Mesh Methods. Springer, New York (2011)Google Scholar
  24. 24.
    Sulman, M., Williams, J.F., Russell, R.D.: Optimal mass transport for higher dimensional adaptive grid generation. J. Comput. Phys. 230(9), 3302–3330 (2011)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Strehl, R., Sokolov, A., Kuzmin, D., Horstmann, D., Turek, S.: A positivity-preserving finite element method for chemotaxis problems in 3D. J. Comp. Appl. Math. 239(1), 290–303 (2013)MathSciNetzbMATHGoogle Scholar
  26. 26.
    de Boor, C.: Good approximation by splines with variable knots. II. In: Conference on the Numerical Solution of Differential Equations (Univ. Dundee, Dundee, 1973), pp. 12–20. Lecture Notes in Math., Vol. 363. Springer, Berlin (1974)Google Scholar
  27. 27.
    Huang, W.: Practical aspects of formulation and solution of moving mesh partial differential equations. J. Comput. Phys. 171(2), 753–775 (2001)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Benamou, J.D., Brenier, Y.: A computational fluid mechanics solution to the Monge–Kantorovich mass transfer problem. Numer. Math. 84(3), 375–393 (2000)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Knott, M., Smith, C.S.: On the optimal mapping of distributions. J. Optim. Theory Appl. 43(1), 39–49 (1984)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Brenier, Y.: Polar factorization and monotone rearrangement of vector-valued functions. Comm. Pure Appl. Math. 44(4), 375–417 (1991)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Sulman, M., Williams, J., Russell, R.D.: An efficient approach for the numerical solution of the Monge–Ampère equation. Appl. Numer. Math. 61(3), 298–307 (2011)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Kuzmin, D.: On the design of general-purpose flux limiters for finite element schemes. I. Scalar convection. J. Comput. Phys. 219(2), 513–531 (2006).  https://doi.org/10.1016/j.jcp.2006.03.034 MathSciNetzbMATHGoogle Scholar
  33. 33.
    Kuzmin, D.: Explicit and implicit FEM-FCT algorithms with flux linearization. J. Comput. Phys. 228(7), 2517–2534 (2009).  https://doi.org/10.1016/j.jcp.2008.12.011 MathSciNetzbMATHGoogle Scholar
  34. 34.
    Horstmann, D.: From 1970 until present: the Keller–Segel model in chemotaxis and its consequences I. Jahresber. DMV 105, 103–165 (2003)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Horstmann, D.: From 1970 until present: the Keller–Segel model in chemotaxis and its consequences II. Jahresber. DMV 106, 51–69 (2004)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Epshteyn, Y., Kurganov, A.: Upwind-difference potentials method for Patlak–Keller–Segel chemotaxis model. J. Sci. Comput. 53, 689–713 (2012)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Aida, M., Tsujikawa, T., Efendiev, M., Yagi, A., Mimura, M.: Lower estimate of the attractor dimension for a chemotaxis growth system. J. Lond. Math. Soc. 74(2), 453–474 (2006)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Strehl, R., Sokolov, A., Kuzmin, D., Horstmann, D., Turek, S.: A flux-corrected finite element method for chemotaxis problems. J. Comput. Appl. Math. 10(2), 219–232 (2010)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsWright State UniversityDaytonUSA

Personalised recommendations