Fractional Sensitivity Equation Method: Application to Fractional Model Construction
- 175 Downloads
Abstract
Fractional differential equations provide a tractable mathematical framework to describe anomalous behavior in complex physical systems, yet they introduce new sensitive model parameters, i.e. derivative orders, in addition to model coefficients. We formulate a sensitivity analysis of fractional models by developing a fractional sensitivity equation method. We obtain the adjoint fractional sensitivity equations, in which we present a fractional operator associated with logarithmic-power law kernel. We further construct a gradient-based optimization algorithm to compute an accurate parameter estimation in fractional model construction. We develop a fast, stable, and convergent Petrov–Galerkin spectral method to numerically solve the coupled system of original fractional model and its corresponding adjoint fractional sensitivity equations.
Keywords
Sensitive fractional orders Model error Logarithmic-power law kernel Petrov–Galerkin spectral method Iterative algorithm Parameter estimationNotes
References
- 1.West, B.J., Bologna, M., Grigolini, P.: Physics of Fractal Operators. Springer, New York (2003)CrossRefGoogle Scholar
- 2.West, B.J.: Fractional Calculus View of Complexity: Tomorrows Science. CRC Press, Boca Raton (2016)zbMATHCrossRefGoogle Scholar
- 3.Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. Imperial College Press, London (2010)zbMATHCrossRefGoogle Scholar
- 4.Suzuki, J.L., Zayernouri, M., Bittencourt, M.L., Karniadakis, G.E.: Fractional-order uniaxial visco-elasto-plastic models for structural analysis. Comput. Methods Appl. Mech. Eng. 308, 443 (2016)MathSciNetCrossRefGoogle Scholar
- 5.Meral, F.C., Royston, T.J., Magin, R.: Fractional calculus in viscoelasticity: an experimental study. Commun. Nonlinear Sci. Numer. Simul. 15(4), 939 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
- 6.Baeumer, B., Benson, D.A., Meerschaert, M., Wheatcraft, S.W.: Subordinated advection-dispersion equation for contaminant transport. Water Resour. Res. 37(6), 1543 (2001)CrossRefGoogle Scholar
- 7.Jaishankar, A., McKinley, G.H.: A fractional K-BKZ constitutive formulation for describing the nonlinear rheology of multiscale complex fluids. J. Rheol. (1978-present) 58(6), 1751 (2014)CrossRefGoogle Scholar
- 8.Sreenivasan, K.R., Antonia, R.A.: The phenomenology of small-scale turbulence. Ann. Rev. Fluid Mech. 29(1), 435 (1997)MathSciNetCrossRefGoogle Scholar
- 9.Jha, R., Kaw, P.K., Kulkarni, D.R., Parikh, J.C., Team, A.: Evidence of Lévy stable process in tokamak edge turbulence. Phys. Plasmas (1994-present) 10(3), 699 (2003)CrossRefGoogle Scholar
- 10.del Castillo-Negrete, D., Carreras, B.A., Lynch, V.E.: Fractional diffusion in plasma turbulence. Phys. Plasmas (1994-present) 11(8), 3854 (2004)CrossRefGoogle Scholar
- 11.Jaishankar, A., McKinley, G.H.: Power-law rheology in the bulk and at the interface: quasi-properties and fractional constitutive equations. Proc. R. Soc. A Math. Phys. Eng. Sci. 469(2149), 20120284 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
- 12.Naghibolhosseini, M.: Estimation of outer-middle ear transmission using DPOAEs and fractional-order modeling of human middle ear. In: Ph.D. Thesis, City University of New York, NY (2015)Google Scholar
- 13.Naghibolhosseini, M., Long, G.R.: Fractional-order modelling and simulation of human ear. Int. J. Comput. Math. 95(6–7), 1257 (2018)MathSciNetCrossRefGoogle Scholar
- 14.Magin, R.L.: Fractional calculus models of complex dynamics in biological tissues. Comput. Math. Appl. 59(5), 1586 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
- 15.Anastasio, T.J.: The fractional-order dynamics of brainstem vestibulo-oculomotor neurons. Biol. Cybern. 72(1), 69 (1994)CrossRefGoogle Scholar
- 16.Djordjević, V.D., Jarić, J., Fabry, B., Fredberg, J.J., Stamenović, D.: Fractional derivatives embody essential features of cell rheological behavior. Ann. Biomed. Eng. 31(6), 692 (2003)CrossRefGoogle Scholar
- 17.Le Méhauté, A.: Fractal Geometries Theory and Applications. CRC Press, Boca Raton (1991)zbMATHGoogle Scholar
- 18.Duarte, F.B., Machado, J.T.: Chaotic phenomena and fractional-order dynamics in the trajectory control of redundant manipulators. Nonlinear Dyn. 29(1), 315 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
- 19.Martins, J., Kroo, I., Alonso, J.: In: Proceedings of the 38th Aerospace Sciences Meeting (Reno, NV, 2000), AIAA, pp. 2000–0689Google Scholar
- 20.Sobieski, J.S.: Sensitivity of complex, internally coupled systems. AIAA J. 28, 153–160 (1990)CrossRefGoogle Scholar
- 21.Liu, S., Canfield, R.A.: Two forms of continuum shape sensitivity method for fluid-structure interaction problems. J. Fluids Struct. 62, 46 (2016)CrossRefGoogle Scholar
- 22.Zayernouri, M., Metzger, M.: Coherent features in the sensitivity field of a planar mixing layer. Phys. Fluids (1994-present) 23(2), 025105 (2011)CrossRefGoogle Scholar
- 23.Stanford, B., Beran, P., Kurdi, M.: Adjoint sensitivities of time-periodic nonlinear structural dynamics via model reduction. Comput. Struct. 88(19), 1110 (2010)CrossRefGoogle Scholar
- 24.Bischof, C., Khademi, P., Mauer-Oats, A., Carle, A.: Adifor 2.0: automatic differentiation of Fortran 77 program. In: IEEE Computational Science and Engineering (1996)Google Scholar
- 25.Bischof, C., Roh, L., Mauer-Oats, A.: ADIC: an extensible automatic differentiation tool for ANSI-C. Softw. Pract. Exp. 27, 1427–1456 (1997)CrossRefGoogle Scholar
- 26.Bischof, C., Land, B., Vehreschild, A.: Proceeding in Applied Mathematics and Mechanics, vol. 2, pp. 50–53 (2003)Google Scholar
- 27.Van Keulen, F., Haftka, R.T., Kim, N.H.: Review of options for structural design sensitivity analysis, part 1: linear systems. Comput. Methods Appl. Mech. Eng. 194(30), 3213 (2005)zbMATHCrossRefGoogle Scholar
- 28.Wei, H., Chen, W., Sun, H., Li, X.: A coupled method for inverse source problem of spatial fractional anomalous diffusion equations. Inverse Problems Sci. Eng.: Former. Inverse Problems Eng. 18(7), 945 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
- 29.Chakraborty, P., Meerschaert, M.M., Lim, C.Y.: Parameter estimation for fractional transport: A particle-tracking approach. Water Resour. Res. 45, W10415 (2009). https://doi.org/10.1029/2008WR007577 CrossRefGoogle Scholar
- 30.Cho, Y., Kim, I., Sheen, D.: A fractional-order model for minmod millennium. Math. Biosci. 262, 36 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
- 31.Kelly, J.F., Bolster, D., Meerschaert, M.M., Drummond, J.D., Packman, A.I.: Fracfit: a robust parameter estimation tool for fractional calculus models. Water Resour. Res. 53(3), 2559 (2017)CrossRefGoogle Scholar
- 32.Lim, C.Y., Meerschaert, M.M., Scheffler, H.P.: Parameter estimation for operator scaling random fields. J. Multivar. Anal. 123, 172 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
- 33.Ghazizadeh, H.R., Azimi, A., Maerefat, M.: An inverse problem to estimate relaxation parameter and order of fractionality in fractional single-phase-lag heat equation. Int. J. Heat Mass Transf. 55(7), 2095 (2012)CrossRefGoogle Scholar
- 34.Chen, S., Liu, F., Jiang, X., Turner, I., Burrage, K.: Fast finite difference approximation for identifying parameters in a two-dimensional space-fractional nonlocal model with variable diffusivity coefficients. SIAM J. Numer. Anal. 54(2), 606 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
- 35.Yu, B., Jiang, X.: Numerical identification of the fractional derivatives in the two-dimensional fractional cable equation. J. Sci. Comput. 68(1), 252 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
- 36.Yu, B., Jiang, X., Qi, H.: Numerical method for the estimation of the fractional parameters in the fractional mobile/immobile advection-diffusion model. Int. J. Comput. Math. 95, 1–20 (2017)MathSciNetGoogle Scholar
- 37.Gorenflo, R., Mainardi, F., Moretti, D., Paradisi, P.: Time fractional diffusion: a discrete random walk approach. Nonlinear Dyn. 29(1–4), 129 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
- 38.Sun, Z., Wu, X.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56(2), 193 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
- 39.Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225(2), 1533 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
- 40.Wang, H., Wang, K., Sircar, T.: A direct \(o (n log^2 n)\) finite difference method for fractional diffusion equations. J. Comput. Phys. 229(21), 8095 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
- 41.Wang, K., Wang, H.: A fast characteristic finite difference method for fractional advection-diffusion equations. Adv. Water Resour. 34(7), 810 (2011)CrossRefGoogle Scholar
- 42.Cao, J., Xu, C.: A high order schema for the numerical solution of the fractional ordinary differential equations. J. Comput. Phys. 238(1), 154 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
- 43.Zeng, F., Li, C., Liu, F., Turner, I.: Numerical algorithms for time-fractional subdiffusion equation with second-order accuracy. SIAM J. Sci. Comput. 37(1), A55 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
- 44.Zayernouri, M., Matzavinos, A.: Fractional Adams-Bashforth/Moulton methods: an application to the fractional Keller–Segel chemotaxis system. J. Comput. Phys. 317, 1–14 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
- 45.Rawashdeh, E.: Numerical solution of fractional integro-differential equations by collocation method. Appl. Math. Comput. 176(1), 1 (2006)MathSciNetzbMATHGoogle Scholar
- 46.Khader, M.: On the numerical solutions for the fractional diffusion equation. Commun. Nonlinear Sci. Numer. Simul. 16(6), 2535 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
- 47.Khader, M., Hendy, A.: The approximate and exact solutions of the fractional-order delay differential equations using legendre pseudospectral method. Int. J. Pure Appl. Math. 74(3), 287 (2012)zbMATHGoogle Scholar
- 48.Li, X., Xu, C.: A space-time spectral method for the time fractional diffusion equation. SIAM J. Numer. Anal. 47(3), 2108 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
- 49.Li, X., Xu, C.: Existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation. Commun. Comput. Phys. 8(5), 1016 (2010)MathSciNetzbMATHGoogle Scholar
- 50.Chen, S., Shen, J., Wang, L.: Generalized Jacobi functions and their applications to fractional differential equations. arXiv:1407.8303 (2014)
- 51.Wang, H., Zhang, X.: A high-accuracy preserving spectralGalerkin method for the Dirichlet boundary-value problem of variable-coefficient conservative fractional diffusion equations. J. Comput. Phys. 281, 67 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
- 52.Bhrawy, A.H., Doha, E.H., Baleanu, D., Ezz-Eldien, S.S.: A spectral tau algorithm based on Jacobi operational matrix for numerical solution of time fractional diffusion-wave equations. J. Comput. Phys. 293, 142 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
- 53.Zayernouri, M., Karniadakis, G.E.: Fractional Sturm–Liouville eigen-problems: theory and numerical approximations. J. Comput. Phys. 47–3, 2108 (2013)MathSciNetzbMATHGoogle Scholar
- 54.Zayernouri, M., Ainsworth, M., Karniadakis, G.E.: Tempered fractional Sturm–Liouville eigenproblems. SIAM J. Sci. Comput. 37(4), A1777 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
- 55.Samiee, M., Zayernouri, M., Meerschaert, M.M.: A unified spectral method for FPDEs with two-sided derivatives; part I: a fast solver. J. Comput. Phys. (2018). https://doi.org/10.1016/j.jcp.2018.02.014
- 56.Samiee, M., Kharazmi, E., Zayernouri, M.: Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2016. Springer, New York, pp. 651–667Google Scholar
- 57.Kharazmi, E., Zayernouri, M., Karniadakis, G.E.: Petrov–Galerkin and spectral collocation methods for distributed order differential equations. SIAM J. Sci. Comput. 39(3), A1003 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
- 58.Kharazmi, E., Zayernouri, M., Karniadakis, G.E.: A Petrov–Galerkin spectral element method for fractional elliptic problems. Comput. Methods Appl. Mech. Eng. 324, 512–536 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
- 59.Kharazmi, E., Zayernouri, M.: Fractional pseudo-spectral methods for distributed-order fractional PDES. Int. J. Comput. Math. 95(6–7), 1340–1361 (2018)MathSciNetCrossRefGoogle Scholar
- 60.Lischke, A., Zayernouri, M., Karniadakis, G.E.: A Petrov–Galerkin spectral method of linear complexity for fractional multiterm ODEs on the half line. SIAM J. Sci. Comput. 39(3), A922 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
- 61.Samiee, M., Zayernouri, M., Meerschaert, M.M.: A unified spectral method for FPDEs with two-sided derivatives; part II: Stability, and error analysis. J. Comput. Phys. (2018). https://doi.org/10.1016/j.jcp.2018.07.041
- 62.Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)zbMATHGoogle Scholar
- 63.Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)zbMATHGoogle Scholar
- 64.Ervin, V.J., Roop, J.P.: Variational solution of fractional advection dispersion equations on bounded domains in \(\text{ R }^d\). Numer. Methods Partial Differ. Equ. 23(2), 256 (2007)zbMATHMathSciNetCrossRefGoogle Scholar
- 65.Atanackovic, T.M., Pilipovic, S., Stankovic, B., Zorica, D.: Fractional Calculus with Applications in Mechanics: Vibrations and Diffusion Processes. Wiley, New York (2014)zbMATHCrossRefGoogle Scholar
- 66.Afzali, F., Kapucu, O., Feeny, B.F.: In: ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers (2016)Google Scholar
- 67.Afzali, F., Acar, G.D., Feeny, B.F.: In: ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (American Society of Mechanical Engineers, 2017), pp. V008T12A050–V008T12A050Google Scholar
- 68.Zamani, V., Kharazmi, E., Mukherjee, R.: Asymmetric post-flutter oscillations of a cantilever due to a dynamic follower force. J. Sound Vib. 340, 253 (2015)CrossRefGoogle Scholar