Advertisement

A Relaxation Projection Analytical–Numerical Approach in Hysteretic Two-Phase Flows in Porous Media

  • Eduardo AbreuEmail author
  • Abel Bustos
  • Paola Ferraz
  • Wanderson Lambert
Article
  • 18 Downloads

Abstract

Hysteresis phenomenon plays an important role in fluid flow through porous media and exhibits convoluted behavior that are often poorly understood and that is lacking of rigorous mathematical analysis. We propose a twofold approach, by analysis and computing to deal with hysteretic, two-phase flows in porous media. First, we introduce a new analytical projection method for construction of the wave sequence in the Riemann problem for the system of equations for a prototype two-phase flow model via relaxation. Second, a new computational method is formally developed to corroborate our analysis along with a representative set of numerical experiments to improve the understanding of the fundamental relaxation modeling of hysteresis for two-phase flows. Using the projection method we show the existence by analytical construction of the solution. The proposed computational method is based on combining locally conservative hybrid finite element method and finite volume discretizations within an operator splitting formulation to address effectively the stiff relaxation hysteretic system modeling fundamental two-phase flows in porous media.

Keywords

Hyperbolic conservation laws Riemann problem Projection method Relaxation Hysteretic two-phase flow Finite volume/element 

Mathematics Subject Classification

76S05 76M10 76M20 

Notes

Supplementary material

References

  1. 1.
    Abreu, E.: Numerical modelling of three-phase immiscible flow in heterogeneous porous media with gravitational effects. Math. Comput. Simul. 97, 234–259 (2014)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Abreu, E.: Numerical simulation of wave propagation in three-phase flows in porous media with spatially varying flux functions. In: 4th International Conference on Hyperbolic Problems: Theory, Numerics, Applications, 2014, Padova/Itália. The proceedings of HYP2012. American Institute of Mathematical Sciences (AIMS); Series on Applied Mathematics, vol. 8, pp. 233–240 (2014)Google Scholar
  3. 3.
    Abreu, E., Bustos, A., Lambert, W.J.: Asymptotic behavior of a solution of relaxation system for flow in porous media. In: Klingenberg, C., Westdickenberg, M. (eds.) Theory, Numerics and Applications of Hyperbolic Problems I. HYP 2016. Springer Proceedings in Mathematics and Statistics, vol. 236. Springer, Cham (2018)Google Scholar
  4. 4.
    Abreu, E., Bustos, A., Lambert, W.J.: Non-monotonic traveling wave and computational solutions for gas dynamics Euler equations with stiff relaxation source terms. Comput. Math. Appl. 70, 2155–2176 (2015)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Abreu, E., Bustos, A., Ferraz, P., Lambert, W.: A computational multiscale approach for incompressible two-phase flow in heterogeneous porous media including relative permeability hysteresis. In: Proceedings of the 6th International Conference on Approximation Methods and Numerical Modelling in Environment and Natural Resources Pau—MAMERN VI2015, vol. 1, pp.349–366 . Editorial Universidad de Granada (2015)Google Scholar
  6. 6.
    Abreu, E., Colombeau, M., Panov, E.Y.: Weak asymptotic methods for scalar equations and systems. J. Math. Anal. Appl. 444, 1203–1232 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Abreu, E., Colombeau, M., Panov, E.Y.: Approximation of entropy solutions to degenerate nonlinear parabolic equations. Zeitschrift für angewandte Mathematik und Physik 68, 133 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Abreu, E., Conceição, D.: Numerical modeling of degenerate equations in porous media flow. J. Sci. Comput. 55(3), 688–717 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Abreu, E., Díaz, C., Galvis, J., Sarkis, M.: On high-order conservative finite element methods. Comput. Math. Appl. 75(6), 1852–1867 (2018)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Abreu, E., Douglas, J., Furtado, F., Pereira, F.: Operator splitting for three-phase flow in heterogeneous porous media. Commun. Comput. Phys. 6(1), 72–84 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Abreu, E., Douglas, J., Furtado, F., Marchesin, D., Pereira, F.: Three-phase immiscible displacement in heterogeneous petroleum reservoirs. Math. Comput. Simul. 73, 2–20 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Abreu, E., Lambert, W.: Computational modeling technique for numerical simulation of immiscible two-phase flow problems involving flow and transport phenomena in porous media with hysteresis. In:The American Institute of Physics Conference Proceedings Porous Media and Its Applications in Science, Engineering and Industry, vol. 1453, pp. 141–146 (2012)Google Scholar
  13. 13.
    Abreu, E., Vieira, J.: Computing numerical solutions of the pseudo-parabolic Buckley–Leverett equation with dynamic capillary pressure. Math. Comput. Simul. 137, 29–48 (2017)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Abidoye, L.K., Das, D.B.: Scale dependent dynamic capillary pressure effect for two-phase flow in porous media. Adv. Water Resour. 74, 212–230 (2014)CrossRefGoogle Scholar
  15. 15.
    Adimurthi Jaffré, J., Gowda, V.: Godunov-type methods for methods for conservation laws with a flux function discontinuous in space. SIAM J. Numer. Anal. 42, 179–208 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Andreianov, B.: New approaches to describing admissibility of solutions of scalar conservation laws with discontinuous flux. ESAIM Proc. Surv. 50, 40–65 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Andreianov, B., Cancès, C.: Vanishing capillarity solutions of Buckley–Leverett equation with gravity in two-rocks medium. Comput. Geosci. 17(3), 551–572 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Andreianov, B., Igbida, N.: On uniqueness techniques for degenerate convection–diffusion problems. Int. J. Dyn. Syst. Differ. Equ. 4, 3–34 (2012)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Andreianov, B., Karlsen, K.H., Risebro, N.H.: A theory of L1-dissipative solvers for scalar conservation laws with discontinuous flux. Arch. Ration. Mech. Anal. 201, 27–86 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Andreianov, B., Karlsen, K.H., Risebro, N.H.: On vanishing viscosity approximation of conservation laws with discontinuous flux. Netw. Heterog. Media 5(3), 617–633 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Andreianov, B., Mitrović, D.: Entropy conditions for scalar conservation laws with discontinuous flux revisited. Ann. Inst. Henri Poincaré AN 32, 1307–1335 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Arbogast, T., Pencheva, G., Wheeler, M.F., Yotov, I.: A multiscale mortar mixed finite element method. Multiscale Model. Simul. 6(1), 319–346 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Araya, R., Harder, C., Paredes, D., Valentin, F.: Multiscale hybrid-mixed method. SIAM J. Numer. Anal. 51(6), 3505–3531 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Azevedo, A., Marchesin, D., Plohr, B.J., Zumbrun, K.: Capillary instability in models for three-phase flow. Zeitschrift für angewandte Mathematik und Physik 53, 713–746 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Azevedo, A., Souza, A., Furtado, F., Marchesin, D., Plohr, B.: The solution by the wave curve method of three-phase flow in virgin reservoirs. Transp. Porous Media 83, 99–125 (2010)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Barenblatt, G.I.: Filtration of two nonmixing fluids in a homogeneous porous medium. Sov. Acad. Izv. Mech. Gas Fluids 5, 857–64 (1971)Google Scholar
  27. 27.
    Barenblatt, G.I., Entov, V.M., Ryzhik, V.M.: Theory of Fluid Flows Through Natural Rocks, Theory and Applications of Transport in Porous Media. Kluwer, Boston (1990)zbMATHCrossRefGoogle Scholar
  28. 28.
    Beliaev, A.Y., Hassanizadeh, S.M.: A theoretical model of hysteresis and dynamic effects in the capillary relation for two-phase flow in porous media. Transp. Porous Media 43, 487–510 (2001)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Benamou, J.-D., Despres, B.: A domain decomposition method for the Helmholtz equation and related optimal control problems. J. Comput. Phys. 136(1), 68–82 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Boon, W.M., Nordbotten, J.M., Yotov, I.: Robust discretization of flow in fractured porous media. SIAM J. Numer. Anal. 56(4), 2203–2233 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Brooks, R. H., Corey, A. T.: Hydraulic properties of porous media. In: Hydrology Paper No. 3, pp. 1–27. Colorado State University, Fort Collins (1964)Google Scholar
  32. 32.
    Bulicek, M., Gwiazda, P., Malek, J., Swierczewska-Gwiazda, A.: On scalar hyperbolic conservation laws with a discontinuous flux. M3AS Math. Models Methods Appl. Sci. 21(1), 89–113 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Burger, R., Karlsen, K.H., Klingenberg, C., Risebro, N.H.: A front tracking approach to a model of continuous sedimentation in ideal clarifier-thickener units. Nonlinear Anal. Real World Appl. 4(3), 457–481 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Burger, R., Karlsen, K.H., Towers, J.D.: An Engquist–Osher-type scheme for conservation laws with discontinuous flux adapted to flux connections. SIAM J. Numer. Anal. 47(3), 1684–1712 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Cancès, C.: Asymptotic behaviour of two-phase flows in heterogeneous porous media for capillarity depending only on space. II. Nonclassical shocks to model oil-trapping. SIAM J. Math. Anal. 42, 972–995 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Cao, X., Nemadjieu, S.F., Pop, I.S.: Convergence of an MPFA finite volume scheme for a two phase porous media flow model with dynamic capillarity. IMA J. Numer. Anal. 39, 512–544 (2018).  https://doi.org/10.1093/imanum/drx078 CrossRefGoogle Scholar
  37. 37.
    Carrillo, J.: Conservation laws with discontinuous flux functions and boundary condition. J. Evol. Equ. 3(2), 283–301 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Castañeda, P., Abreu, E., Furtado, F., Marchesin, D.: On a universal structure for immiscible three-phase flow in virgin reservoirs. Comput. Geosci. 20(1), 171–185 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Chen, Z., Ewing, R.E.: Comparison of various formulations of three-phase flow in porous media. J. Comput. Phys. 132, 362–373 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Chen, G.-Q., Tzavaras, A.E.: Remarks on the contributions of Constantine M. Dafermos to the subject of conservation laws. Acta Math. Sci. 32, 3–14 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM. J. Numer. Anal. 47(2), 1319–1365 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Colonna, J., Brissaud, F., Millet, J.L.: Evolution of capillary and relative permeability hysteresis. SPEJ 1992, 222–228 (1992)Google Scholar
  43. 43.
    Corey, A., Rathjens, C., Henderson, J., Wyllie, M.: Three-phase relative permeability. Trans. AIME 207, 349–351 (1956)Google Scholar
  44. 44.
    Corli, A., Fan, H.: Two-phase flow in porous media with hysteresis. J. Differ. Equ. 265, 1156–1190 (2018)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Crasta, G., De Cicco, V., De Philippis, G., Ghiraldin, F.: Structure of solutions of multidimensional conservation laws with discontinuous flux and applications to uniqueness. Arch. Ration. Mech. Anal. 221(2), 961–985 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Cueto-Felgueroso, L., Juanes, R.: Stability analysis of a phase-field model of gravity-driven unsaturated flow through porous media. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 79(3), 036301 (2009)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Dafermos, C.: Hyperbolic Conservation Laws in Continuum Physics. Springer, Berlin (2016)zbMATHGoogle Scholar
  48. 48.
    Delle-Monache, M., Piccoli, B., Rossi, F.: Traffic regulation via controlled speed limit. SIAM J. Control Optim. 55(5), 2936–2958 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    DiCarlo, D.A., Juanes, R., LaForce, T., Witelski, T.P.: Nonmonotonic traveling wave solutions of infiltration into porous media. Water Resour. Res. 44, W02406 (2008).  https://doi.org/10.1029/2007WR005975 CrossRefGoogle Scholar
  50. 50.
    Diehl, S.: A regulator for continuous sedimentation in ideal clarifier-thickener units. J. Eng. Math. 60, 265–291 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    Dria, D.E., Pope, G.A., Sepehrnoori, K.: Three-phase gas/oil/brine relative permeabilities measured under CO\(_{2}\) flooding conditions. Soc. Pet. Eng. 20184, 143–150 (1993)Google Scholar
  52. 52.
    Doster, F., Hilfer, R.: Generalized Buckley–Leverett theory for two-phase flow in porous media. New J. Phys. 13, 123030 (2011)CrossRefGoogle Scholar
  53. 53.
    Douglas Jr., J., Paes Leme, P.J., Roberts, J.E., Wang, J.: A parallel iterative procedure applicable to the approximate solution of second order partial differential equations by mixed finite element methods. Numer. Math. 65(1), 95–108 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  54. 54.
    Douglas, J., Furtado, F., Pereira, F., Yeh, L.M.: On the numerical simulation of waterflooding of heterogeneous petroleum reservoirs. Comput. Geosci. 1(2), 155–190 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    Duijn, C.J., Mitra, K., Pop, I.S.: Travelling wave solutions for the Richards equation incorporating non-equilibrium effects in the capillarity pressure. Nonlinear Anal. Real World Appl. 41, 232–268 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  56. 56.
    Efendiev, Y., Galvis, J., Hou, T.Y.: Generalized multiscale finite element methods. J. Comput. Phys. 251, 116–135 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  57. 57.
    El Behi-Gornostaeva, E., Mitra, K., Schweizer, B.: Traveling Wave Solutions for the Richards Equation with Hysteresis. Preprint 2018-05, University of Dortmund (2018)Google Scholar
  58. 58.
    Elhaj, M., Hashan, M., Hossain, M. E.: A critical review and future trend on relative permeability hysteresis. Society of Petroleum Engineers SPE-191260-MS, presented at SPE Trinidad and Tobago Section Energy Resources Conference, 25–26 June, Port of Spain, Trinidad and Tobago Publication.  https://doi.org/10.2118/191260-MS
  59. 59.
    Ern, A., Vohralik, M.: Adaptive inexact Newton methods with a posteriori stopping criteria for nonlinear diffusion PDEs. SIAM J. Sci. Comput. 35(4), A1761–A1791 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  60. 60.
    Ern, A., Vohralik, M.: Polynomial-degree-robust a posteriori estimates in a unified setting for conforming, nonconforming, discontinuous Galerkin, and mixed discretizations. SIAM J. Numer. Anal. 53(2), 1058–1081 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  61. 61.
    Frid, H., Shelukhin, V.: Initial boundary value problems for quasilinear parabolic system in three-phase capillary flow in porous media. SIAM J. Math. Anal. 36(5), 1407–1425 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  62. 62.
    Frid, H., Shelukhin, V.: A quasilinear parabolic system for three phase capillary flow in porous media. SIAM J. Math. Anal. 35(4), 1029–1041 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  63. 63.
    Furati, K.: Effects of relative permeability hysteresis dependence on two-phase flow in porous media. Transp. Porous Media 28, 181–203 (1997)CrossRefGoogle Scholar
  64. 64.
    Gander, M., Rohde, C.: Overlapping Schwarz waveform relaxation for convection-dominated nonlinear conservation laws. SIAM J. Sci. Comput. 27(2), 415–439 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  65. 65.
    Ganis, B., Wheeler, M.F., Yotov, I.: An enhanced velocity multipoint flux mixed finite element method for Darcy flow on non-matching hexahedral grids. Procedia Comput. Sci. 51, 1198–1207 (2015)CrossRefGoogle Scholar
  66. 66.
    Garavello, M., Piccoli, B.: Traffic Flow on Networks. American Institute of Mathematical Sciences, Springfield (2006)zbMATHGoogle Scholar
  67. 67.
    Gasda, S.E., Farthing, M.W., Kees, C.E., Miller, C.T.: Adaptive split-operator methods for modeling transport phenomena in porous medium systems. Adv. Water Resour. 34, 1268–1282 (2011)CrossRefGoogle Scholar
  68. 68.
    Glowinski, R., Osher, S.J., Yin, W.: Splitting Methods in Communication, Imaging, Science, and Engineering. Springer, Berlin (2017)zbMATHGoogle Scholar
  69. 69.
    Goatin, P., Gottlich, S., Kolb, O.: Speed limit and ramp meter control for traffic flow networks. Eng. Optim. 48, 1121–1144 (2016)MathSciNetCrossRefGoogle Scholar
  70. 70.
    Graf, M., Kunzinger, M., Mitrovic, D., Vujadinovic, D.: A vanishing dynamic capillarity limit equation with discontinuous flux. eprint arXiv:1805.02723. Date: 05/2018. Accessed on 04/08/2018
  71. 71.
    Guiraldello, R.T., Ausas, R.F., Sousa, F.S., Pereira, F., Buscaglia, G.C.: The multiscale Robin coupled method for flows in porous media. J. Comput. Phys. 355, 1–21 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  72. 72.
    Gwiazda, P., Swierczewska-Gwiazda, A., Wittbold, P., Zimmermann, A.: Multi-dimensional scalar balance laws with discontinuous flux. J. Funct. Anal. 267(8), 2846–2883 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  73. 73.
    Hassanizadeh, S.M., Gray, W.G.: Thermodynamic basis of capillary pressure in porous media. Water Resour. Res. 29, 3389–3405 (1993)CrossRefGoogle Scholar
  74. 74.
    Hoang, T.-T.-P., Japhet, C., Kern, M., Roberts, J.E.: Space-time domain decomposition for advection–diffusion problems in mixed formulations. Math. Comput. Simul. 137, 366–389 (2017)MathSciNetCrossRefGoogle Scholar
  75. 75.
    Hoang, T.-T.-P., Jaffre, J., Japhet, C., Kern, M., Roberts, J.E.: Space-time domain decomposition methods for diffusion problems in mixed formulations. SIAM J. Numer. Anal. 51(6), 3532–3559 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  76. 76.
    Hoffmann, K.H., Sprekels, J., Visintin, A.: Identification of hysteresis lopps. J. Comput. Phys. 78, 215–230 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  77. 77.
    Holden, H., Karlsen, K.H., Lie, K.-A., Risebro, N.H.: Splitting Methods for Partial Differential Equations with Rough Solutions-Analysis and MATLAB Programs. European Mathematical Society, Zurich (2010)zbMATHCrossRefGoogle Scholar
  78. 78.
    Isaacson, E., Marchesin, D., Plohr, B., Temple, J.B.: Multiphase flow models with singular Riemann problems. Comput. Appl. Math. 11, 147–166 (1992)MathSciNetzbMATHGoogle Scholar
  79. 79.
    Jerauld, G.R., Salter, S.J.: The effect of pore-structure on hysteresis in relative permeability and capillary. Transp. Porous Media 5(2), 103–151 (1990)CrossRefGoogle Scholar
  80. 80.
    Jin, S., Xin, Z.: The relaxation schemes for systems of conservation laws in arbitrary space dimensions. Commun. Pure Appl. Math. 48(3), 235–276 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  81. 81.
    Juanes, R.: Nonequilibrium effects in models of three-phase flow in porous media. Adv. Water Resour. 31, 661–673 (2008)CrossRefGoogle Scholar
  82. 82.
    Juanes, R., Patzek, T.W.: Three-phase displacement theory: an improved description of relative permeabilities. SPE J. 9(3), 302–313 (2004)CrossRefGoogle Scholar
  83. 83.
    Juanes, R., Patzek, T.W.: Relative permeabilities for strictly hyperbolic models of three-phase flow in porous media. Transp. Porous Media 57(2), 125–152 (2004)MathSciNetCrossRefGoogle Scholar
  84. 84.
    Karlsen, K.H., Risebro, N.H.: Corrected operator splitting for nonlinear parabolic equations. SIAM J. Numer. Anal. 37, 980–1003 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  85. 85.
    Karlsen, K.H., Lie, K.A., Natvig, J.R., Nordhaug, H.F., Dahle, H.K.: Operator splitting methods for systems of convection–diffusion equations: nonlinear error mechanisms and correction strategies. J. Comput. Phys. 2, 636–663 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  86. 86.
    Karlsen, K.H., Risebro, N.H., Towers, J.D.: \(L^{1}\) stability for entropy solutions of nonlinear degenerate parabolic convection–diffusion equations with discontinuous coefficients. Skr. K. Nor. Vidensk. Selsk. 3, 1–40 (2003)zbMATHMathSciNetGoogle Scholar
  87. 87.
    Karlsen, K.H., Risebro, N.H., Towers, J.D.: On a nonlinear degenerate parabolic transport-diffusion equation with a discontinuous coefficient. J. Differ. Equ. 93, 23 (2002)zbMATHGoogle Scholar
  88. 88.
    Karlsen, K.H., Towers, J.D.: Convergence of a Godunov scheme for conservation laws with a discontinuous flux lacking the crossing condition. J. Hyperbolic Differ. Equ. 14, 671 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  89. 89.
    Karlsen, K.H., Towers, J.D.: Convergence of the Lax–Friedrichs scheme and stability for conservation laws with a discontinuous space-time dependent flux. Chin. Ann. Math. 25(3), 287–318 (2004)zbMATHCrossRefGoogle Scholar
  90. 90.
    van Kats, F.M., Van Duijn, C.J.: A mathematical model for hysteretic two-phase flow in porous media. Transp. Porous Media 43, 239–263 (2001)MathSciNetCrossRefGoogle Scholar
  91. 91.
    Kruzhkov, S.N.: First order quasilinear equations with several independent variables. Mat. Sb. (N.S.) 81(123), 228–255 (1970)MathSciNetzbMATHGoogle Scholar
  92. 92.
    Lee, S., Wheeler, M.F.: Adaptive enriched Galerkin methods for miscible displacement problems with entropy residual stabilization. J. Comput. Phys. 331, 19–37 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  93. 93.
    LeFloch, P.G.: Hyperbolic Systems of Conservation Laws. The Theory of Classical and Classical Shock Waves Lectures Math. ETH Zurich, Birkhauser Verlag, Basel (2002)zbMATHGoogle Scholar
  94. 94.
    Leverett, M.C.: Capillary behavior in porous solids. Trans. Soc. Pet. Eng. (AIME) 142, 152–169 (1941)Google Scholar
  95. 95.
    Li, K.: More general capillary pressure and relative permeability models from fractal geometry. J. Contam. Hydrol. 111(1–4), 13–24 (2010)CrossRefGoogle Scholar
  96. 96.
    Lions, P.L.: On the Schwarz alternating method III: a variant for nonoverlapping subdomains. In: Chan, T.F., Glowinski, R., Periaux, J., Windlund, O.B. (eds.) Domain Decomposition Methods for Partial Differential Equations, pp. 202–223. SIAM, Philadelphia (1990)Google Scholar
  97. 97.
    List, F., Radu, F.A.: A study on iterative methods for solving Richards equation. Comput. Geosci. 20(2), 341–353 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  98. 98.
    Liu, T.P.: Hyperbolic conservation laws with relaxation. Commun. Math. Phys. 108, 153–175 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  99. 99.
    Liu, H., Zhang, L., Sun, D., Wang, D.: Optimize the settings of variable speed limit system to improve the performance of freeway traffic. IEEE Trans. Intell. Transp. Syst. 16(6), 3249–3257 (2015)CrossRefGoogle Scholar
  100. 100.
    Marchesin, D., Plohr, B.: Wave structure in WAG recovery. Soc. Pet. Eng. J. 71314, 209–219 (2001)Google Scholar
  101. 101.
    Martin, S., Vovelle, J.: Convergence of implicit finite volume methods for scalar conservation laws with discontinuous flux function. M2AN Math Model. Numer. Anal. 42(5), 699–727 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  102. 102.
    Natalini, R., Tesei, A.: On the Barenblatt model for non-equilibrium two phase flow in porous media. Arch. Ration. Mech. Anal. 150, 349–367 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  103. 103.
    Nessyahu, H., Tadmor, E.: Non-oscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys. 87(2), 408–463 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  104. 104.
    Plohr, B., Marchesin, D., Bedrikovetsky, P., Krause, P.: Modeling hysteresis in porous media flow via relaxation. Comput. Geosci. 5, 225–256 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  105. 105.
    Pop, I.S., Radu, F.A., Knabner, P.: Mixed finite elements for the Richards equation: linearization procedure. J. Comput. Appl. Math. 168(1), 365–373 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  106. 106.
    Raeini, A.Q., Blunt, M.J., Bijeljic, B.: Direct simulations of two-phase flow on micro-CT images of porous media and upscaling of pore-scale forces. Adv. Water Resour. 74, 116–126 (2014)CrossRefGoogle Scholar
  107. 107.
    Radu, F.A., Kumar, K., Nordbotten, J.M., Pop, I.S.: A robust, mass conservative scheme for two-phase flow in porous media including Hölder continuous nonlinearities. IMA J. Numer. Anal. 38(2), 884–820 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  108. 108.
    Radu, F.A., Pop, I.S., Knabner, P.: Order of convergence estimates for an Euler implicit, mixed finite element discretization of Richards equation. SIAM J. Numer. Anal. 42(4), 1452–1478 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  109. 109.
    Radu, F.A., Pop, I.S., Knabner, P.: Error estimates for a mixed finite element discretization of some degenerate parabolic equations. Numer. Math. 109, 285–311 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  110. 110.
    Rahunanthan, A., Furtado, F., Marchesin, D., Piri, M.: Hysteretic enhancement of carbon dioxide trapping in deep aquifers. Comput. Geosci. 18(6), 899–912 (2014)zbMATHCrossRefGoogle Scholar
  111. 111.
    Schaerer, C.E., Marchesin, D., Sarkis, M., Bedrikovetsky, P.: Permeability hysteresis in gravity counterflow segregation. SIAM J. Appl. Math. 66(5), 1512–1532 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  112. 112.
    Schweizer, B.: The Richards equation with hysteresis and degenerate capillary pressure. J. Differ. Equ. 252(10), 5594–5612 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  113. 113.
    Shen, C., Sun, M.: Instability of Riemann solutions to a scalar conservation law with discontinuous flux. Z. Angew. Math. Phys. 66(3), 499–515 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  114. 114.
    Shen, W.: On the uniqueness of vanishing viscosity solutions for Riemann problems for polymer flooding. Nonlinear Differ. Equ. Appl. 24, 37 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  115. 115.
    Seus, D., Mitra, K., Pop, I.S., Radu, F.A., Rohde, C.: A linear domain decomposition method for partially saturated flow in porous media. Comput. Methods Appl. Mech. Eng. 333, 331–355 (2018)MathSciNetCrossRefGoogle Scholar
  116. 116.
    Stone, H.L.: Probability model for estimating three-phase relative permeability. J. Pet. Technol. 22, 214–218 (1970)CrossRefGoogle Scholar
  117. 117.
    Szepessy, A.: Measure-valued solution of scalar conservation laws with boundary conditions. Arch. Ration. Mech. Anal. 107(2), 182–193 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  118. 118.
    Towers, J.D.: Convergence of the Godunov scheme for a scalar conservation law with time and space discontinuities. J. Hyperbolic Differ. Equ. 15(2), 175–190 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  119. 119.
    Vohralik, M., Wheeler, M.F.: A posteriori error estimates, stopping criteria, and adaptivity for two-phase flows. Comput. Geosci. 17, 789–812 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  120. 120.
    van Duijn, C.J., Peletier, L.A., Pop, I.S.: A new class of entropy solutions of Buckley–Leverett equation. SIAM J. Math. Anal. 39(2), 507–536 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  121. 121.
    van Duijn, C.J., Fan, Y., Peletier, L.A., Pop, I.S.: Travelling wave solutions for degenerate pseudo-parabolic equations modelling two-phase flow in porous media. Nonlinear Anal. Real World Appl. 14(3), 1361–1383 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  122. 122.
    van Duijn, C.J., Mitra, K.: Hysteresis and horizontal redistribution in porous media. Transp. Porous Media 122(2), 375–399 (2018)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Eduardo Abreu
    • 1
    Email author
  • Abel Bustos
    • 2
  • Paola Ferraz
    • 1
  • Wanderson Lambert
    • 3
  1. 1.University of CampinasCampinasBrazil
  2. 2.Pontificia Universidad Javeriana - CaliCaliColombia
  3. 3.Alfenas Federal UniversityAlfenasBrazil

Personalised recommendations